燃烧涡轮总输出 (MWe) 2 x 238 2 x 169 HRSG 蒸汽循环 (psig/o F/o F) 2,393/1,085/1,085 N/A 1772/1050/1050 蒸汽涡轮功率 (MWe) 263 213 N/A 185 CO 2 回收负荷 (MWe) N/A 28 N/A 平衡。电厂负荷 (MWe) 14 16 18 19 电厂总负荷 (MW) 740 690 338 523 电厂净负荷 (MW) 727 646 320 504 LHV 电厂效率 (%) 59.4 52.8 35.9 53.6 LHV 热耗率 (Btu/kWh) 5,743 6,462 9,493 6,363 LHV CT 效率 (%) 39.0 35.9 NOx 控制 LNB 和 SCR LNB LNB 和 SCR CT 涡轮机规格 F 型框架 F 型框架 (501F-D2) 出口温度 ( o F) 1,156 1,116 电厂最低调节负荷 (%) 22.0 N/A 50.0 22.0 上升速率 (MW/分钟) 80.0 N/A tbd tbd 启动时间,RR 热(分钟) 25 > 25 tbd tbd 电气规格 电网互连(kV) 345 138
部分修改《机场照明设备规格标准》(通知) 针对上述内容,对《机场照明设备规格标准》补充卷(2018 年 10 月 11 日公告第 16074 号)进行了如下修改。 本通知适用于本通知发布之日及以后发布招标公告的工程。
2024 年 9 月 30 日 - 提交的文件应为日本工业标准 A4 尺寸。如果使用大于 A4 的纸张,请使用 A3。 但是,如果这很困难,或者您想使用小册子等。
简介:在过去的几十年中,碳纳米材料(例如碳纳米纤维(CNF)和石墨烯)由于其宏伟的特性而引起了强烈的科学兴趣[1,2]。关于石墨烯的大部分研究都是针对合成高质量和大面积石墨烯方法的探索。有希望的方法是脉搏激光沉积和化学蒸气沉积。虽然在理解石墨烯合成方面已经取得了重要成就,但它们的形成机制尚不清楚。现场技术的最新进展现在为研究原子水平研究固相相互作用的新可能性提供了新的可能性。在这里,我们报告了通过原位透射电子显微镜(TEM)直接观察到铜含有铜纳米纤维(CU-CNFS)的结构转化。实验:使用kaufmann型离子枪制造Cu-CNF(iontech。Inc. Ltd.,模型3-1500-100FC)。所使用的样品是尺寸为5x10x100 µm的市售石墨箔。通过在CNFS生长过程中连续供应Cu,在室温下用1 keV ar +离子辐射石墨箔的边缘。在其他地方详细描述了离子诱导的CNF生长机理的细节[3]。然后将Cu-CNF安装在200 kV的TEM(JEM2010,JEOL CO.,JEOL CO.)的阴极微探针上,并研究了Cu-CNFS向石墨烯的结构转化,在电流 - 电压(I-V)测量过程中进行了研究。结果和讨论:在I-V测量过程中,高温是通过Cu-CNF结构中的Joule加热获得的。焦耳CNF的加热导致其表面石墨化,最后在转化为严重扭曲的石墨烯中。tem图像表明,最初,CNF在本质上是无定形的,而I-V过程中的电流流动引起了CNF的晶体结构的急剧变化,形成了石墨烯的薄层(1-3层)。作为结果,在产生的电流大大增加的情况下,改进了结构的电性能,比初始值高1000倍(从10 -8到10 -5 a)。该过程采用三个步骤进行:Cu纳米颗粒的聚集,无定形碳扩散到Cu中,以及在进一步加热下的Cu纳米颗粒的电迁移。
基于数十年的神经科学研究,我们开发了一套人类大脑智能框架,称为“千脑理论”。其核心是支撑人类智能的相同感觉运动原理,最终将解锁当今人工智能系统中尚未出现的全新功能。
11 这种方法在结构性变化建模中的应用包括 Kulish 和 Rees (2000) 在商品价格永久性变化背景下的应用、Gomez-Gonzalez 和 Rees (2018) 在加入货币联盟背景下的应用以及 Jones (2020) 在人口变化背景下的应用。12 这并不意味着经济将在 2020 年第二季度完全复苏,因为 2020 年第一季度的产出下降需要时间来消除。相反,它假设变量之间的关系与新冠危机之前的关系相似。13 例如,3 月份的 Consensus Economics 调查对 2020 年 GDP 同比增长的平均预测为美国 1.4%、欧元区 0.9% 和日本 1.0%。 14 具体来说,简化形式的解为:xt = ¯ J + ¯ Q xt − 1 + ¯ G ε t,其中 ¯ J = ( ¯ A − ¯ BQ ) − 1 ( ¯ C + ¯ DJ ),¯ Q = ( ¯ A − ¯ BQ ) − 1 ¯ B 和 ¯ G = ( ¯ A − ¯ BQ ) − 1 ¯ F。
对灰度图像进行着色本质上是一个具有多模态不确定性的病态问题。基于语言的着色提供了一种自然的交互方式,即通过用户提供的标题来减少这种不确定性。然而,颜色-物体耦合和不匹配问题使得从单词到颜色的映射变得困难。在本文中,我们提出了一种使用颜色-物体解耦条件的基于语言的着色网络 L-CoDe。引入了物体-颜色对应矩阵预测器 (OCCM) 和新颖的注意力转移模块 (ATM) 来解决颜色-物体耦合问题。为了处理导致颜色-物体对应不正确的颜色-物体不匹配问题,我们采用了软门控注入模块 (SIM)。我们进一步提出了一个包含带注释的颜色-物体对的新数据集,以提供用于解决耦合问题的监督信号。实验结果表明,我们的方法优于基于标题的最先进的方法。
抽象的人皮肤通过皮下触觉小体之间的协同作用感知外部环境刺激。通过模仿人皮肤的功能,具有多种感测功能的软电子产品在健康监测和人造感觉中具有重要意义。最近十年见证了多模式触觉感应设备和软生物电子学之间前所未有的发展和融合。尽管有这些进展,但传统的柔性电子设备通过将单极传感设备整合在一起,以实现压力,应变,温度和湿度的多模式触觉感应。此策略导致高能消耗,有限的整合和复杂的制造过程。已经提出了各种多模式传感器和无串扰的传感机制来弥合自然感觉系统和人工感知系统之间的差距。在这篇综述中,我们提供了触觉传感机制,集成设计原理,信号耦合策略以及当前用于多模式触觉感知的应用的全面摘要。最后,我们强调了当前的挑战,并提出了未来的观点,以促进多模式触觉感知的发展。
o Delta Sigma Phi — 2023 年春季生效,针对酒精和欺凌行为。 o Sigma Rho — 2023 年秋季生效,针对酒精、社区秩序和违反 RSO 政策行为。 o Alpha Delta Alpha — 2023 年秋季生效,针对酒精、欺凌和违反 RSO 政策行为。 o Beta Sigma Theta — 2024 年春季生效,针对酒精、社区秩序和违反 RSO 政策行为。 o Phi Delta Chi — 2024 年春季生效,针对旁观行为。 o Delta Upsilon — 2024 年春季生效,针对酒精、旁观和违反 RSO 政策行为。 ▪ 目前被开除和/或不隶属于兄弟会和姐妹会:
