2005 年报道了一种基于量子相位估计 (QPE) 的算法,可在多项式时间内解决全配置相互作用 (full-CI),该算法可以在所使用的基组内给出变分最佳波函数,但在经典计算机上求解的计算成本随着系统规模的增加而呈指数增加。3 2014 年提出了一种可在嘈杂的中等规模量子 (NISQ) 设备 4 上执行的量子 - 经典混合算法,称为变分量子特征求解器 (VQE)。5,6 此后,出现了许多关于通过改进量子算法 7 – 21 来降低计算成本并提高速度的报道,并且已经记录了使用各种量子设备 22 – 30 的相关实验演示。尽管量子计算机上的量子化学计算理论 (QCC-on-QCs) 取得了快速进展,但有效处理开壳层电子结构的方法仍处于起步阶段。开壳层系统在化学中无处不在。例如,有机双自由基可用作分子自旋量子计算机的原型 31,32、动态核极化 (DNP) 中的极化剂 32,33、有机发光材料 34,35 等等。开壳层多核过渡金属配合物经常作为反应中心参与酶的合成。36,37 单分子磁体作为分子存储装置已被广泛研究。38 为了揭示它们的电子结构,复杂的从头算量子化学计算是强大而必要的工具。然而,在携带自旋-b 不成对电子的开壳层系统中,波