说明VOM452和VOM453,高速光电耦合器,每个由Gaalas红外发射二极管组成,光学地与集成的光子探测器和高速晶体管组成。光检测器是从晶体管中分离出来的,以减少米勒电容效应。开放的收集器输出功能允许电路设计人员与不同逻辑系统(例如TTL,CMOS等)接口时调整负载条件。由于VOM452和VOM453在检测器芯片上具有法拉第盾,因此它也可以拒绝并最大程度地减少输入通用模式瞬态电压。没有基本连接,进一步降低了进入包装的潜在电噪声。VOM452和VOM453包装在行业标准SOP-5软件包中,适用于表面安装。这是工业通信总线隔离的理想解决方案,以及隔离的驱动电路应用,例如IPM(智能电源模块)驱动程序。
本文介绍了一种具有集成多模干涉耦合器的新锥形半导体激光器。新激光器的种子来源是多模干扰耦合器半导体激光器,它克服了脊方波导区域中单模式输出与增益中等体积之间关系所带来的局限性。The simulation results show that the multi-mode interference coupler can effectively provide a spatial single- mode seed light source for the tapered output waveguide, and the tapered output waveguide of the tapered semiconductor laser can also effectively reduce the optical power density of the output laser, which verifies the feasibility of the design scheme and provides a new idea for the design of high beam quality and high power tapered半导体激光器。
量子计算利用量子比特的量子现象(叠加和纠缠)执行复杂的计算任务 [4]。在过去的几十年中,各种各样的量子比特已经被实现,包括超导量子比特 [2],[5],半导体量子点 [6],[7] 和捕获离子量子比特 [8]。在上述量子比特中,捕获离子量子比特因其在量子纠缠中的高保真度而备受关注,因为捕获离子本质上是相同的 [9]。为了将捕获离子量子比特应用于量子计算设备,霍尼韦尔将 QCCD(量子电荷耦合器件)架构实现到可编程捕获离子量子计算机中。在 QCCD 中,捕获离子量子计算机可以通过将离子阱与用于量子比特光学寻址的光电元件集成到一个紧凑的独立设备中来实现。据报道,QCCD 实现了 2 4 的量子体积测量,并且几乎不存在串扰 [10]。
人工大脑被认为是一种先进的智能技术,通过整合突触装置能够模拟人脑中发生的记忆过程。在此背景下,改进突触晶体管的功能以增加神经形态芯片中的信息处理密度是该领域的一大挑战。本文介绍了促进锂离子迁移的长余辉有机发光晶体管,它在 10 V 的低工作电压下显示出 7000 cd m − 2 的出色突触后亮度。0.1 mA 的突触后电流作为内置阈值开关在这些设备中作为触发点实现。设定条件触发的长余辉用于驱动光致变色分子的光异构化过程,模拟人脑中的神经递质转移,实现关键的记忆规则,即从长期记忆到永久记忆的转变。还处理了设置条件触发的长余辉与光电二极管放大器的组合,以模拟设置训练过程后的人类响应动作。总体而言,展示了神经形态计算的成功集成,包括刺激判断、光子发射、转换和编码,以模拟人脑复杂的决策树。
硅光子学在过去十年中已成为未来应用的有前途的解决方案,例如5G Fronthaul,工业自动化,自动驾驶汽车,数据中心,计算机记忆分解和超越[1]的高速光学互连。通过利用互补的金属 - 氧化物 - 塞体导体(CMOS)制造技术先前是为电子工业开发的,已经开发了各种高速主动的光学组件,例如调制器和光电遗传学器[2,3]。此外,在各种FAB中,已优化了被动光学组件(例如光栅耦合器[4]和波导[5])的生产方法。为了进一步增强从/到光子积分电路(PIC)的被动组件和活动组件之间的光学连接,互连波导的正确设计和形状起着至关重要的作用。随着新的光子构建块的引入,例如硅芯片上III – V光源的异质整合,需要连续改进。有三种通用方法可以在两个波导之间实现光耦合:对接耦合,方向耦合和绝热耦合。对接耦合方法是指直接连接的两个波导的模式曲线匹配。通过最大化模式字段重叠来优化其耦合效率。因此,对于异质整合,在彼此之间需要在不同的组件之间耦合光,对接耦合不是首选选项。此外,定向耦合器的带宽有限,因为节拍长度取决于波长。在定向耦合方法中,当输入波导处的模式耦合到耦合区域的超级模型的叠加时,光耦合在两个平行波导之间。该模式以半节拍的长度从一个波导到另一个波导完全耦合,而节拍长度可以设计为短[6]。但是,在实践中很难精确确定确切的节拍长度,从而使功率传输效率和设备性能不确定。在绝热耦合方法中,
摘要 - 我们为满足宽带耦合的基本要求,任意耦合率的支持,超低损失,高损坏,高制造公差和紧凑的足迹的支持,展示了一个高性能2×2分离器的设计。这是基于对弯曲方向耦合器(DC)的宽带响应的严格耦合模式理论分析来实现的,并通过演示完整的耦合模型,该模型的宽带值为0.4、0.5、0.6和0.7。作为基准,我们演示了一个0.5:0.5的分离器,可显着将耦合变化从传统DC中的0.391降低到80 nm波长跨度的0.051。这代表了耦合变化的显着降低7.67倍。此外,在提出的设计中使用了新发明的低损失弯曲,导致超低损坏设计,并具有可忽略的多余损失(0。003±0。013 dB)。拟议的0.5:0.5硅条波导的设计具有耐受性,并且在完整的300 mm晶圆上显示出持续的较低量变化,在80 nm波长范围内显示了最大的交叉耦合变化,在晶片的极端边缘处。futhermore,我们通过波导宽度耐受耐受性研究增强了晶圆映射,并确定了该设备在80 nm波长范围内的波导宽度偏差仅为±20 nm的最大耦合变化的设备的耐受性。这些规格使提出的分离器成为具有质量生产的实际应用的有吸引力的组成部分。
nitride(Si 3 N 4)已成为综合光子学的广泛利用材料[1]。在近红外且可见的范围中,其低损失和转移良好的新兴应用,例如生物传感[2],电信[3]和量子计算[4]。此外,Si 3 N 4与互补的金属 - 氧化物 - 氧化型(CMOS)织物兼容,从而实现了大规模的制造。然而,由于模式区域之间的错误匹配,高索引对比度SI 3 N 4波导和光纤维之间的光偶联仍然具有挑战性。光栅耦合器通常用于促进片上波导和光纤维之间光的垂直耦合。具有蚀刻到引导层的周期性结构,在波导中传播的光可以向上衍射朝向光学纤维,反之亦然。与使用边缘耦合器的水平耦合相比,垂直
定向耦合器(DCS)在具有多功能应用(例如电源拆分,调制和波长施用)多路复用等多功能应用中起关键作用。然而,由于分散而引起的固有波长依赖性对使用DC构成了带宽的限制。尤其是50:50 DC仅在一个波长下实现此比率。这种意外的耦合变化显着降低了许多硅光子应用的性能。在寻求实现宽带50:50 DC时,已经探索了各种计划。值得注意的是,已经提出了基于模式进化的绝热DC,其中输入波导中的光在DC中的均匀或奇数模式在50:50分裂[1]中均具有均匀或奇数。绝热DC是固有的较长设备,可能会超过300 µm,并且经常表现出高度损失。另一种设计策略采用了非对称DC,利用不同宽度的波导来降低波长依赖性。尽管具有潜力,但这些设计对线宽变化高度敏感,并且制造不耐症[2]。实现宽带功能和制造公差在硅光子学中构成了重大挑战,这主要是由于纳米级维度和高指数对比度[3]。最近,弯曲的DC(不对称DC的子集)已成为可行的解决方案[4]。他们提供宽带耦合,这是一个相对紧凑的足迹,同时保持较高的制造耐受性。通过弯曲波导的不对称引入消除了对不同波导宽度的需求,因此解决了在具有不对称波导宽度的DC中观察到的制造灵敏度。由于不对称性,不再是不可能的,与在对称的直接直流中耦合相反,这会导致非单调耦合与波长,并且可以设计为实现最大值
1 芝加哥大学詹姆斯弗兰克研究所,美国伊利诺伊州芝加哥 60637 2 芝加哥大学物理系,美国伊利诺伊州芝加哥 60637 3 斯坦福大学物理与应用物理系,美国加利福尼亚州斯坦福 94305 4 西北大学物理与天文系,美国伊利诺伊州埃文斯顿 60208 5 耶鲁大学耶鲁量子研究所,美国康涅狄格州纽黑文 06511 6 中国科学技术大学合肥国家微尺度物质科学研究中心和物理科学学院,中国合肥 230026 7 中国科学技术大学上海量子科学研究中心和中科院量子信息与量子物理卓越创新中心,上海 201315 8 普林斯顿大学物理系,美国新泽西州普林斯顿 08544 9 芝加哥大学普利兹克分子工程学院,美国伊利诺伊州芝加哥60637,美国
作为从研究到商业部署的硅光子学的过渡,有效地将光线融入高度紧凑和功能性的亚微米硅波导的包装解决方案必须是必要的,但仍然具有挑战性。有助于实现大规模集成的220 nm硅在绝缘子(SOI)平台是铸造厂采用最广泛的集成,从而实现了既定的制造工艺和广泛的光子组合库。因此,该平台的高效,可扩展和宽带耦合方案的开发至关重要。利用两光子聚合(TPP)和基于Fermat原理的确定性自由形式的微观启示设计方法,这项工作表明了标准的SMF-28单模式纤维和硅Wave在220 nmSOI SOI平台上的标准SMF-28单模式纤维和硅波波之间的超高效和宽带3-D耦合器界面。耦合器在基本TE模式下达到了0.8 dB的低耦合损失,而1 dB的带宽超过180 nm。宽带操作可实现从通信到光谱的各种带宽驱动的应用。此外,3-D自由形式耦合器还可以极大地容忍纤维未对准和制造可变性,从而使包装要求放松,以降低成本降低资本利用标准的电子包装过程流量。©2024中国激光出版社