摘要:我们研究了以量子测量和反馈为动力的基于耦合的热机。我们考虑了机器的两个不同版本:(1)量子麦克斯韦的恶魔,其中耦合 - 标准系统连接到可拆卸的单个共享浴室,以及(2)测量辅助冰箱,其中耦合 - Qubit-Qubit-Qubit-Qubit-Qubit-Qubit-qubit-Qubit with与热水浴室接触。在量子麦克斯韦的恶魔案例中,我们讨论了离散和连续测量。我们发现,可以通过将其耦合到第二个量子位来提高基于单个基于Qubit的设备的功率输出。我们进一步发现,与仅执行单倍测量的两个平行操作的两个设置相比,这两个量子位的同时测量都可以产生更高的净热量提取。在冰箱情况下,我们使用了连续的测量和统一操作来为基于耦合的冰箱供电。我们发现,可以通过进行合适的测量来增强使用交换操作运行的冰箱的冷却能力。
在旋转框架中观察到的两级系统的共振横向驾驶在拉比频率下两个退化状态,这是量子力学中出现的等效性。尽管成功地控制了自然和人工量子系统,但由于不循环术语等非理想性,可能会出现某些局限性(例如,可实现的栅极速度)。我们引入了一个由两个电容耦合的透射量子台形成的超导复合量子轴(CQB),其具有一个小的避免的横穿(小于环境温度)在两个能级之间。我们使用仅基带脉冲,非绝热过渡和连贯的Landau-Zener干扰来控制这种低频CQB,以实现快速,高效率,单Qubit的操作,其Clifford Fidelities超过99.7%。我们还在两个低频CQB之间执行耦合的量子操作。这项工作表明,使用仅基带脉冲可行,对低频量子的通用非绝热是可行的。
甲板包括四个基线实验:(a)历史大气模型对比(AMIP,处方SST),(b)前工业耦合的对照模拟(固定CO 2),(c)通过CO 2的突然四倍((D)由1%/yr Co 2增加的CO 2(d)模拟的仿真,该模拟由CO 2的突然四倍。
多模型和多尺度耦合的扩展是多代码耦合,其中不同的程序耦合并一起运行。例如,一个可以是 PAM-CRASH,另一个可以是客户程序。这两个不同程序之间的交互将通过接口(如匹配网格实体)进行,并且交换将通过基于消息传递接口 (MPI) 的完整库进行,该库将称为 ESI 耦合库 (ECL)。通过使用此库,耦合将以这样一种方式完成,即一个程序对另一个程序的源代码的访问非常有限。软件供应商之间的协作将更加容易,每个合作伙伴都保留其程序的机密性。ESI 集团和汽车合作伙伴之间已经完成了多代码耦合的成功测试案例。多代码耦合也可以在多物理环境框架中使用,如流体结构相互作用或热结构相互作用或任何其他类型的耦合。这证明了这种“新方法”在试验空间世界中的巨大潜力。
脱碳复杂的工业能源系统是减轻气候变化的重要步骤。设计此类部门耦合的工业能源系统向低碳设计的过渡非常具有挑战性,因为在系统设计中,必须考虑成本效益的操作和整个生命周期中环境影响的减少。可以使用软件来确定最佳系统设计:最近,引入了开源框架SECMOD,以通过完全整合生命周期评估来考虑环境影响,以实现多能系统模型的线性优化。在这项工作中,我们扩展了SECMOD,以允许综合决策对于建模工业能源系统至关重要。因此,我们提供了第一个开源的混合企业线性程序框架,并完整地集成了生命周期评估。我们使用secmod来研究扇区耦合的工业能源系统中抽水热量的储能系统的好处,并通过比较经济和气候最佳限度来确定有关系统设计的权衡。
摘要:脑肿胀是缺血性中风中死亡和残疾的主要原因。药物被批准用于2型糖尿病(T2DM),并且在其他情况下可能是有益的,但在其他情况下可能是有益的。我们研究了脑缺血的鼠模型,其中具有脑动脉闭塞/再灌注(MCAO/R)。SLC5A2 /SGLT2 mRNA和蛋白质在星形胶质细胞中从头上调。MCAO/R之后,来自小鼠的大脑切片的活细胞成像表明,星形胶质细胞通过增加细胞内Na +和细胞体积和细胞体积(细胞毒性水肿)的响应响应了D-葡萄糖的适度增加,这两者都受到SGLT2抑制剂canagli-lif of of of canagli-canagli-canagli-canagli-canagli-canagli-canagli-canagli-Canagli-Canagli-Canagli-Canagli-Canagli-Canagli抑制。在三种小鼠中风模型中研究了Canagli ozin的作用:非糖尿病和T2DM小鼠具有中等缺血性损伤(MCAO/R,1/24 H)和严重缺血性损伤的非糖尿病小鼠(McAo/R,2/24 H)。canagli lozin减少了中度但不严重的缺血性损伤模型中的梗塞体积。然而,在所有测试的模型中,Canagli ozin显着降低的半球肿胀和改善的神经功能。canagli ozin减少脑肿胀的能力无论对梗塞大小的影响如何具有重要的翻译意义,尤其是在大型缺血性笔触中。
3D人姿势估计(3D HPE)任务使用2D图像或视频来预测3D空间中的人类关节坐标。尽管最新的基于深度学习的方法取得了进步,但它们主要忽略了可访问的文本和自然可行的人类知识的能力,而错过了有价值的隐性监督,以指导3D HPE任务。此外,以前的努力经常从整个人体的角度研究这项任务,从而忽略了隐藏在不同身体部位的细粒度指导。为此,我们基于3D HPE的扩散模型(名为FinePose)提出了一个新的细粒及时驱动的DeNoiser。它由三个核心块组成,增强了扩散模型的反向过程:(1)通过耦合辅助辅助文本和可学习的提示以模拟隐式指南的耦合知识,并通过耦合的辅助辅助文本和自然可行的零件知识,可以通过耦合的辅助辅助文本和自然可行的零件知识来构建精细的部分零件感知的提示。(2)Fine-
静电定义的半导体量子点阵列为量子计算和量子模拟提供了一个有前途的平台。然而,栅极电压与点电位和点间隧道耦合的串扰使器件参数的调整变得复杂。到目前为止,点电位的串扰通常使用所谓的虚拟门来有效地补偿,虚拟门是物理栅极电压的特定线性组合。然而,由于隧道耦合对栅极电压呈指数依赖性,目前通过缓慢的迭代过程来补偿隧道屏障的串扰。在这项工作中,我们表明,可以利用相同的指数依赖性适用于所有栅极这一事实,有效地表征和补偿隧道屏障上的串扰。我们展示了四重量子点阵列中串扰的有效校准,并定义了一组虚拟屏障门,通过它们我们展示了对所有点间隧道耦合的正交控制。我们的方法标志着大规模量子点阵列调谐过程的可扩展性迈出了关键一步。
拓扑孤子目前正在研究其外来特性,尤其是在非线性物理,光学和物质科学方面。但是,随着时间的流逝,强大产生和稳定性有限的挑战阻碍了他们的实际用途。为了解决这个问题,开发了一种方法,以形成可聚合液晶膜片中孤子的结构化阵列。通过形成稳定的液晶网络的原位光聚合剂来保存它们的复杂分子结构。最令人兴奋的是,它们的属性已提高到包括响应功能。热驱动时,这些拓扑孤子介导了表面地形的重新配置。复杂形状的变化发生取决于导演的固有复杂空间分布,这甚至可能导致完全形状的反转和地形变化,高达最初厚度的40%。相反,形状的变化提供了有关初始导演pro文件的信息,该信息与数学模型一致。含孤子的聚合物涂层适用于多个域,范围从可调光学到触觉,从形状耦合的传感系统到温度耦合的热量管理。
摘要:结合密度泛函理论和变分量子动力学与 Davydov ansatz,研究了中性自由基材料中双态的光子吸收和相关磁场效应。双态是研究与真实分子振动环境耦合的两能级系统全量子动力学的理想模型系统。在这项工作中,我们模拟了中性自由基材料(4-N-咔唑基-2,6-二氯苯基)双(2,4,6-三氯苯基)-甲基)的光吸收光谱,发现最高占据分子轨道 - 单占据分子轨道 (SOMO) 和 SOMO - 最低未占据分子轨道跃迁与实验结果高度一致。分别从光谱和粒子动力学的角度全面讨论了分子内振动电子耦合的重要作用,指出不同的对称性对振动有不同的贡献和长期尺度影响。在此模型的基础上,考虑施加磁场,以动力学方式定性研究其磁性,结果可以用洛伦兹函数之和来描述。