近年来,人们对用于入耳式应用的 MEMS 扬声器的兴趣日益浓厚,在声压级、失真和外形尺寸方面取得了令人鼓舞的成果 [1–3]。基于薄膜 PZT 的 MEMS 扬声器有望取代目前用于小型可穿戴设备的笨重扬声器。减小扬声器尺寸并使其适应微制造工艺可以进一步降低功耗并将其集成到更小的设备中,如智能手表和真正的无线耳机。在本文中,我们介绍了 [4] 中所示的扬声器的测量结果,并将结果与 [5] 中提出的集总参数模型和有限元模型进行的仿真结果进行了比较。在使用集总参数和有限元模型进行的仿真中,扬声器产生的声压级超过 120 dB SPL,频率低至 100 Hz。扬声器的响应使用 GRAS RA0045 耳塞耦合器测量,符合国际 60318-4 (IEC) 标准。扬声器的后腔未加载,装置放置在消声 GRAS 室内。设计并 3D 打印了一个适配器,以使扬声器的移动板适应耳塞耦合器的输入。还评估了由于扬声器中使用的薄膜压电材料的复杂非线性行为而导致的总谐波失真 (THD)。实验结果与实际结果之间的差异
图2:脑电图设备中的最新突破。(a)PEDOT的干电极:PSS转移的CVD石墨烯膜[49]。(b)由纹身样电子设备和无线EEG耳塞设备组成的微型可穿戴式脑电图设备[54]。(c)基于LM纸的基于LM的自供电的E-Skin [57]。(d)行业的脑电图设备(左:Cognixion One耳机;中间:内核流耳机;右:Synchron的Stentrode)[56]。
Deepa Galaiya,医学博士(耳鼻喉科助理教授 - 头颈手术)Deepa Galaiya是一名受过奖学金培训的神经科医生和外侧颅底外科医生。她的临床实践专门研究儿童和成人中中耳,内耳,颅底和面部神经障碍的手术和医疗。这包括治疗颅底肿瘤,前庭schwannomas(或声学神经瘤),人工耳蜗,慢性耳部疾病,听力丧失,胆固醇,耳塞,耳脊髓病,脑脊液漏气泄漏和耳痛。她接受了内窥镜耳部手术的训练,这是一种最少的侵入性方法来治疗胆汁脱蛋白瘤和耳膜穿孔,以减少对可见切口的需求。她将为巴尔的摩和华盛顿特区都会区的患者居民提供服务。Galaiya博士的研究兴趣包括开发用于评估电极插入,尖端折叠和基底膜破裂的人耳塞植入的力感应微量毛。她的其他项目涉及用于手术导航的计算机视觉,用于机器人颞骨手术的工具到组织的注册,手术人体工程学的优化以及与合作控制机器人组合的中耳假体放置力的力量评估。财务披露-Deepa Galaiya受约翰·霍普金斯(John Hopkins)非财务披露雇用-Deepa Galaiya没有非财务披露
(includes f or gynecomastia or macromastia) • Dermatology, such as chemical ex foliation and el ectrolysis, dermabrasions and chemical peels, laser treatment or skin injections and implants • Excision, excessive skin an d subcutaneous tissue (including lipectomy and panniculectomy) of the abdomen, thighs, hips, legs, buttocks, forearms,手臂,手,垫子下的f和其他区域•眼睛或眉毛手术,例如骨整形术,眉毛ptosis或can骨成形术•肌肉皮瓣•鼻手术,例如隆鼻术或腹膜成形术•耳塞•耳管•penile植入物•治疗Varicose素脉
可戴式计算领域的这些最新进展正在彻底改变我们与技术互动的方式,并扩大智能系统无缝集成到我们日常生活中的潜力。苹果于 2016 年推出了首款获得商业成功的 TWS 耳机 [ 2 ],并被誉为 TWS 市场的开创者。现在,支持 ANC 的耳机的份额正在飙升 [ 3 ]。ANC 耳机为可戴式计算带来了新的亮点。ANC 耳机在耳罩内放置一个反馈麦克风,以感应用户听到的环境噪音。由于这个麦克风听到的噪音与人听到的噪音相似,因此 ANC 电路可以在将结果信号发送到耳机扬声器之前产生抗噪效果。为了改善降噪效果,ANC 耳机进一步利用耳罩外部的前馈麦克风与反馈麦克风协同工作以扩展 ANC 带宽。反馈和前馈麦克风为许多传感应用开辟了新的机遇。例如,当耳机与人耳紧密密封时,就会产生耦合效应 [10],大大放大耳道中的低频声音。因此,许多可听设备的健康功能可以通过用反馈麦克风被动记录通过耳道传播的身体引起的振动来实现。这一想法在学术界得到了广泛的利用,引发了许多令人兴奋的移动应用,包括心率感应、耳部疾病诊断、呼吸感应、身体活动识别等 [11, 12, 15, 18]。除了上述感知耳戴设备的好处之外,耦合效应是入耳式耳塞可以为音乐播放产生足够的低音响应的根本原因。然而,这种耦合效应是可听设备的致命弱点,它放大了本来就过多的低频声音,例如由于身体运动和风引起的声音,使自己的讲话听起来不自然。当 ANC 电路拾取环境中放大的低频噪声时,这种低频噪声会使麦克风饱和,显著降低目标信号的动态范围,产生可听见的伪影,并使 ANC 电路变得不稳定。不幸的是,低频噪声会损害 ANC 性能,影响音频质量,甚至使 ANC 耳塞产生高音调的啸叫噪声。在本文中,我们将描述 ANC 耳机中常用的解决此问题的解决方案如何影响使用 ANC 麦克风子系统的可听式传感系统。需要指出的是,行业中用于调解这些影响以优化 ANC 性能、透明模式性能和语音拾取的解决方案可能会对社区提出的许多算法产生负面影响。过去,这些算法从未向可听式计算社区透露过。此外,经常被耳塞社区忽视,
配备了最新的蓝牙5.4模块,它提供了更稳定,更快的连接体验。您可以在降低噪音的同时无缝连接到设备,使您可以欣赏音乐并进行清晰的电话。智能设计的充电箱非常紧凑,完美地存放了耳塞并具有清晰的电池指示器,让您一眼监视电池状态。凭借广泛的音乐控件和免提呼叫功能,您可以轻松地管理播放列表和呼叫而无需触摸手机。新添加的语音提示语言选择功能可提供方便的操作反馈,确保您准确地了解耳声的当前状态,例如配对,电池低电池,电源,电源关闭或模式开关。
摘要 持续的压力会对人的身心健康产生负面影响。压力监测和管理是一个活跃的研究领域,目的是分析或减轻压力的影响。检测压力的一种有前途的方法是测量生物信号,例如脑电图 (EEG) 或心电图 (ECG)。在本研究中,我们介绍了一种可穿戴的入耳式和耳罩式设备,可同时测量 EEG 和 ECG 信号。该设备由干式和软式传感电极组成,它们共形集成在耳塞表面。我们进行了一项初步研究,让测试对象接触三种标准压力源(斯特鲁普、记忆搜索和心算),同时测量他们的 EEG 和 ECG 信号。初步结果表明使用卷积神经网络对各种压力条件进行分类的可行性。