摘要。键盘包裹机制可保护量子随机甲骨文模型中所选的密文攻击(Ind-CCA-Secure KEMS),已由Boneh,Dagdelen,Fischlin,Lehmann,Lehmann,Schafner和Zhandry(Crypto 2012),Crypto 2012),Targhi and Targhi and targhi and targhi(targhi and unuh and unuh(tcc and unruh and unruh and in ccc and kirfmanz and hofmanz and hofmanz)提出。 2017)。但是,所有这些构造获得的方案的安全级别尤其是其构建基块原始安全级别的一半。在本文中,我们给出了一种将弱安全的公钥加密方案紧密转换为量子随机甲骨文模型中的IND-CCA安全KEM的转换。更准确地说,我们为确定性的公钥加密(DPKE)定义了一个称为“不相关性的可模拟性”的新安全概念,我们提出了一种方法,可以将不连接的可模拟DPKE方案转换为Ind-CCA键键封闭机制方案,而无需授予相当可能的安全性降级。此外,我们还提供了DPKE方案,其差异性可显着降低为量词后假设。结果,我们获得了量子随机甲骨文模型中各种量子后假设的Ind-CCA安全性KEM。关键字:紧密的安全性,被选为ciphertext的安全性,Quantum加密后,KEM。
2022年9月14日 — Performed Under Contract No. DACW 56-77-C-0097. 2. Course No. 3. 823.60. 耳. 5. 6. 7. 8. 9. 10. 3 Sh.90.00 S. 2642.60. N 89 22 59 W. 2644.89. N 89 58" 19" E.
量子纠错技术是消除量子计算机运行时噪声的重要方法。针对噪声带来的问题,本文利用强化学习对Semion码的缺陷进行编码,并利用经验重放技术实现译码器的设计。Semion码是与Kitaev toric码具有相同对称群Z 2 的量子拓扑纠错码,利用纠错码的拓扑特性将量子比特映射到多维空间,计算出译码器的纠错准确率为77.5%。计算拓扑量子Semion码的阈值,根据码距的不同,得到不同的阈值,当码距为d = 3, 5, 7时,p阈值= 0.081574,当码距为d = 5, 7, 9时,p阈值= 0.09542。并设计Q网络来优化量子电路门的代价,比较不同阈值下代价降低的大小。强化学习是设计Semion码译码器、优化数值的重要方法,为未来的机器工程译码器提供更通用的错误模型和纠错码。
由集体耦合引起的相干误差是许多现实量子系统中的主要噪声形式,其破坏性比通常认为的随机误差更大。在此,我们提出通过代码连接将稳定码与恒定激励码相结合。也就是说,通过将 [[ n , k , d ]] 稳定外码与双轨内码连接,我们得到一个 [[2 n , k , d ]] 恒定激励码,它不受相干相位误差的影响,并且等同于泡利旋转稳定码。当稳定外码具有容错能力时,恒定激励码对随机误差具有正的容错阈值。将外码设置为四量子比特振幅阻尼码可得到一个八量子比特恒定激励码,该码可纠正单个振幅阻尼误差,并且我们分析了该码作为量子存储器的潜力。
第 0 代:复兴式建筑,如伦敦的圣约翰大教堂。现存最早的垂直复兴式建筑是 18 世纪的根西圣母教堂,建于 19 世纪末。垂直教堂有两种类型:第 1 代:罗马圣彼得大教堂或布宜诺斯艾利斯圣彼得大教堂。没有证据表明这些建筑中的任何一座是在教皇英诺森三世统治期间建造的,但它们可能是在他的继任教皇英诺森三世统治期间建造的。第 7 代:英国的建筑。在接受《纽约时报》采访时,赖特表示:“我认为我能做自己想做的事并没有什么错。只是它不适合我。”他补充道:“我不知道你是否可以称它为有趣,第九代:建筑。除了是世界上最大的黑尾长耳大野兔、白尾长耳大野兔、蓝尾长耳大野兔、红尾长耳大野兔、黄尾长耳大野兔种群的家园之外,这里还是世界上一些最大的黑尾长耳大野兔种群的家园,还有白尾长耳大野兔、蓝尾长耳大野兔、红尾长耳大野兔、黄尾长耳大野兔和白尾长耳大野兔种群。
条码扫描器光学元件 光源:冷白色照明 LED 扫描方法:CMOS 区域传感器,640 x 480 像素 扫描速率:高达 120 fps 触发模式:手动、自动触发 读取俯仰角:360° 读取倾斜角:± 15° 读取倾斜角:360° 曲率:R ≥ 20 mm (UPC) pcs 0.9 时的最小分辨率:0.2 mm / 7.87 mil 最小。 pcs 值:0.2 视野:水平 74˚,垂直 60˚ 代码 39 的景深:5 - 70 毫米 (0.127 毫米) / 0.19 - 2.76 英寸 (5 mil) 5 - 110 毫米 (0.254 毫米) / 0.19 - 4.33 英寸 (10 mil) 30 - 135 毫米 (0.508 毫米) / 1.18 - 5.31 英寸 (20 mil) 代码 EAN13 的景深:5 - 145 毫米 (0.33 毫米) / 0.19 - 5.71 英寸 (13 mil) 代码 QR 码的景深:0 - 37 毫米 (0.169 毫米) / 0.59 - 1.46 英寸 (6.7 mil) 0 - 105 毫米 (0.381毫米)/0 - 4.13 英寸(15 密耳)
3,4 本科学者,Rammanohar Lohia 博士,阿瓦德大学,印度阿约提亚 摘要:快速响应 (QR) 码现在似乎随处可见。我们可以在海报、杂志广告、网站、产品包装等地方看到它们。使用 QR 码是通过手机将消费者数字连接到互联网的最有趣的方式之一,因为手机已经成为每个人的基本必需品。在本文中,我们提出了一种创建 QR 码的方法,用户可以通过该方法在 Web 浏览器中输入文本并生成 QR 码。Drupal 模块与流行的 libqrencode C 库结合使用,在 Web 浏览器上开发用户界面并将数据编码为 QR 码符号。实验使用英语和泰语的单行和多行文本进行。结果表明,所有 QR 编码输出均已成功且正确地生成。 关键词:QR 码,快速响应码。
定制产品的优势 5 当圆顶无法满足需求时 6 第 1 部分 - 耳印和印模材料 耳印 8 轻松制作深印 9 印模材料 10 耳印技术 11 您的客户值得拥有完美的首次试戴体验 15 闭塞 16 第 2 部分 - 定制产品 定制产品样式选项 18 定制产品耳道长度选项 20 定制产品通气口选择 21 定制产品通气样式 22 影响定制产品尺寸的因素 23 接收器尺寸和插入深度 24 功率水平:接收器 25 防耵聍系统选项 26 易用性选项 27 第 3 部分 - 耳模和定制外壳 100% 数字化制造 29 耳模和定制外壳材料选项 30 耳模和定制外壳样式选项 31 RIC 和 BTE 的声耦合产品组合 34 SlimTip 与 cShell 35 耳模和定制外壳通气选项 36 Phonak Serenity Choice 37 Phonak 定制听力保护装置 38
迷走神经刺激 (VNS) 是一种已获批准的治疗方法,可用于治疗多种神经系统疾病,包括难治性癫痫和难治性抑郁症等,目前正作为治疗神经系统痴呆症(如阿尔茨海默病 (AD) 和相关痴呆 [1] )的潜在疗法而受到关注。VNS 刺激有两种形式,即侵入性和非侵入性(经皮),前者涉及通过手术将刺激电极植入神经周围,后者因副作用小而最受欢迎,涉及通过完整的皮肤刺激迷走神经耳支 (ABVN) 的耳甲区或迷走神经分布的颈部区域 [2] 。在耳甲区以外,耳颞神经支配耳区上方和耳大神经支配下外侧 [3] ,但关于电刺激对这些神经对身体的影响的研究很少。
摘要:可穿戴脑电图 (EEG) 有可能通过脑机接口 (BCI) 改善日常生活,例如改善睡眠、自适应助听器或基于思维的数字设备控制。为了使这些创新更适合日常使用,研究人员正在寻找小型化、隐蔽的 EEG 系统,该系统仍能精确收集神经活动。例如,研究人员正在使用可附在耳朵周围的柔性 EEG 电极阵列 (cEEGrids) 来研究日常生活中的神经激活。然而,这种隐蔽 EEG 方法的使用受到测量挑战的限制,例如信号幅度减小和记录系统成本高。在本文中,我们将低成本开源放大系统 OpenBCI Cyton+Daisy 板与基准放大器 MBrainTrain Smarting Mobi 的性能进行比较。我们的结果表明,OpenBCI 系统是隐蔽 EEG 研究的可行替代方案,具有高度相似的噪声性能,但时间精度略低。对于预算较少的研究人员来说,该系统是一个很好的选择,因此可以为推进隐匿性脑电图研究做出重大贡献。