对于各种类型的听力损失,但当前的治疗方案仍主要限于声音放大和人工耳蜗(Muller&Barr-Gillespie,2015; Schilder等,2018)。SYNE4中的变体(含有核包膜家族成员4)的变体会导致以色列,英国和土耳其个人的常染色体隐性进行性,高调听力损失(Panelapp。; Horn等人,2013年; Masterson等人,2018年)。syne4代码为蛋白质Nesprin-4编码,核骨骼和细胞骨架(LINC)复合物的接头成员(Roux等,2009)。Nesprins位于外部核膜上,它们与内部核膜太阳蛋白相互作用,并与细胞质细胞骨架元素(如肌动蛋白和中间丝)以及运动蛋白以及诸如驱动蛋白(Cartwright&KarakakeSogoglou,2014年)等运动蛋白。缺乏SYNE4或SUN1的小鼠表现出渐进的听力损失,让人联想到DFNB76;在SYNE4基因敲除小鼠(SYNE4 /)中,毛细胞正常发展,但外毛细胞(OHC)核逐渐失去其基础位置,导致随后的OHC变性(Horn等,2013)。在动物模型中的初步结果确定腺相关病毒(AAV)是聋哑基因治疗的有前途的候选者(Landegger等,2017; Akil等,2019; Isgrig et al,2019; Isgrig et al,2019; Nist-Lund等,2019)。AAV似乎很少引起免疫反应,重组AAVs以非常低的速率整合到宿主中,从而降低了遗传毒性的风险(Nakai等,2001)。天然AAV血清型的初始特征表明内耳细胞类型的转移率相对较低,尤其是OHC(Kilpatrick等,2011)。然而,最近开发的合成AAV Capsids似乎已经克服了这一障碍。已显示AAV9-PHP.B在小鼠和非人类灵长类动物中以高速率转导内毛细胞和外毛细胞(Gyorgy等,2019; Ivanchenko等,2020; Lee等,2020)。在这项研究中,我们将SYNE4 /小鼠用作DFNB76隐性耳聋的模型,以开发基于AAV9-PHP.B的这种形式的人类耳聋的基因治疗作为向量。为转导OHC的形态恢复加上形态恢复,我们观察到了增强的OHC存活,改善了听觉的脑干反应(ABR)以及恢复的失真产物耳声发射(DPOAE)。此外,我们证明了内耳的功能恢复足以驱动