主要结果和偶然性的作用:生命耳语 AI 模型对可行胚胎的敏感性为 70.1%,而对来自不同诊所的三个独立盲测集的非可行胚胎的特异性为 60.5%。每个盲测集的加权总体准确率 > 63%,可行胚胎和不可行胚胎的综合准确率为 64.3%,表明模型的稳健性和普遍性超出了偶然性预期的结果。预测分布显示正确和错误分类的胚胎明显分离。可行/不可行胚胎分类的二元比较显示胚胎学家的准确率提高了 24.7%(P = 0.047,n = 2,学生 t 检验),5 波段排名比较显示胚胎学家的准确率提高了 42.0%(P = 0.028,n = 2,学生 t 检验)。
主要结果和偶然性的作用:生命耳语 AI 模型对可行胚胎的敏感性为 70.1%,而对来自不同诊所的三个独立盲测集的非可行胚胎的特异性为 60.5%。每个盲测集的加权总体准确率 > 63%,可行胚胎和不可行胚胎的综合准确率为 64.3%,表明模型的稳健性和普遍性超出了偶然性预期的结果。预测分布显示正确和错误分类的胚胎明显分离。可行/不可行胚胎分类的二元比较显示胚胎学家的准确率提高了 24.7%(P = 0.047,n = 2,学生 t 检验),5 波段排名比较显示胚胎学家的准确率提高了 42.0%(P = 0.028,n = 2,学生 t 检验)。
摘要:用荧光材料掺杂的耳语画廊模式(WGM)谐振器在生物传感中发现了极大的应用。他们不需要特殊条件来激发WGM内部的激发,这为体内感测提供了基础。当前,体内WGM传感器的材料问题是实质性的,因为它们的荧光应具有稳定的光学特性,并且应该具有生物相容性。为了解决这个问题,我们提出了5-7 µm的WGM微孔子,其中掺杂剂由碳量子点(CDS)制成。cds是生物相容性的,因为它们是由碳产生的,并显示出明亮的光学发射,根据激发波长,它显示出不同的频带。此处开发的WGM传感器通过检测牛血清白蛋白分子测试为无标记的生物传感器。结果显示WGM频率转移,检测极限降低至10-16 m。
低维ZnO的材料在过去的几十年中引起了很多关注,因为它们在光电设备中的独特电子和光学支持以及潜在的应用。在本教程中,我们将根据激子和相关的激光过程介绍ZnO薄膜和微型/纳米结构的过去和最新发展。首先,我们简要概述了ZnO的结构和频带特性以及线性光学和激子特性。第二,我们引入了一种以各种形式的ZnO激光的反馈机制,从纳米颗粒到纳米线,纳米丝和薄膜。至于反馈机制,对随机激光,Fabry - PérotLasing和耳语画廊模式激光进行了详细的描述。第三,我们讨论了可能的增益机制,即ZnO中的含量增益和电子血浆(EHP)增益。特殊的兴趣也用于Mott载体密度,这是区分激光和EHP对激光贡献的关键参数。最后,引入了基于ZnO微腔的激子激光的最新发展。
本文介绍了乌尔都语自动语音识别(ASR)模型的全面评估。我们使用单词错误率(WER)分析了三个ASR模型家族的性能:耳语,MMS和无缝M4T,以及对最常见的错误单词和错误类型(包括插入,删除和下限)的详细检查。我们的分析是使用两种类型的数据集进行的,请阅读语音和文章。值得注意的是,我们提供了第一个用于基准乌尔都语ASR模型的对话性语音数据集。我们发现,无缝的大型在读取的语音数据集上的表现优于其他ASR模型,而在对话的语音数据集中,Whisper-Large的表现最佳。此外,这种评估强调了仅使用定量指标来评估乌尔都语(例如乌尔都语)的ASR模型的复杂性,并提出了对强大的乌尔都语文本正常ization系统的需求。我们的发现为乌尔都语等低资源语言开发强大的ASR系统提供了有价值的见解。
纳米光生物传感的早期发展集中于利用纳米瘤的独特光学特性,例如等离子纳米颗粒和光子晶体1,以实现对生物学相互作用的无标签和实时监测。利用现象(如表面等离子体的共振)和耳语画廊模式来检测折射率的微小变化,现在可以在单分子水平上检测生物分子相互作用,对临床诊断的影响。最近的技术进步2包括超材料的整合和制造技术中的进步,例如纳米印刷光刻,这使得能够开发低成本,紧凑和便携式生物感应设备。同时,正在进行的寻求进一步增强纳米光生物传感器的灵敏度,尤其是通过利用与光子共振相关的相位现象。目标是通过最大化的折射率分辨率启用无标签的传感技术,同时降低纳米功能,设置复杂性和成本的需求。在近几十年中,在使用纳米光子传感器的无标记生物分子检测中观察到了利用光谱或角度信息的检测方案的成功应用,以及基于强度的读出方法作为传感器。这些进步导致了表现出竞争力的各种平台的发展,或者在某些情况下,具有卓越的敏感性,符合诊断标准ELISA。但是,
摘要:本文研究了人工神经网络(ANN)作为可行的数字双胞胎或工程系统中典型的耳语库模式(WGM)光学传感器的替代方案,尤其是在机器人技术等动态环境中。由于其脆弱性和有限的耐力,因此在这种情况下,基于微光学谐振器的WGM传感器是不合适的。为了解决这些问题,本文建议了专门为系统设计的ANN,并利用了WGM传感器的高质量因子(Q -Factor)。通过将适用性和耐力扩展到动态环境并减少脆弱性问题,ANN试图进行高分辨率的测量。为了最大程度地减少后处理要求并保持系统鲁棒性,研究目标是使ANN充当WGM传感器输出的代表性预测指标。在本文中使用Gucnoid 1.0类人形机器人作为一个例子,以说明WGM光学传感器如何改善各种应用的类人形机器人性能。实验的结果表明,ANN输出和实际WGM偏移的灵敏度,精度和分辨率是等效的。因此,删除了机器人技术行业中广泛使用高级感知的当前障碍,并验证了ANN作为虚拟替代物或数字双胞胎在机器人系统中的真实WGM传感器的潜力。因此,本文不仅对符合动态环境的机器人技术中使用的传感技术非常有益,还可以对工业自动化和人机界面进行有益。
单细胞RNA-Seq以前所未有的规模和细节来表征生物样品,但数据解释仍然具有挑战性。在这里,我们介绍了Cellwhisperer,这是一种多模式的机器学习模型和软件,该模型和软件连接转录组和文本,用于交互式单细胞RNA-seq数据分析。Cell Whisperer启用25英语中基于聊天的转录组数据的询问。为了培训我们的模型,我们创建了一个具有超过一百万对RNA-seq配置文件和匹配的文本注释的A-Ai-Cunip策划数据集,并在广泛的人类生物学上进行了匹配,我们建立了使用对比学习的匹配转录组和文本的多模式嵌入。我们的模型启用了按单元类型,状态和其他属性以零摄像的方式启用转录组数据集的自由文本搜索和注释,而无需参考数据集。此外,细胞-30个耳语者回答了关于自然语言聊天中细胞和基因的问题,使用生物学流利的大语言模型,我们对我们进行了微调,以分析各种生物应用中的批量和单细胞转录组数据。我们将Cell Whisperer与广泛使用的CellXgene浏览器集成在一起,使用户可以通过集成的图形和聊天接口进行遗传探索RNA-Seq数据。我们的方法展示了一种使用转录组数据的新方法,利用自然语言进行单细胞数据35分析,并为未来的基于AI的生物信息学研究助理建立重要的基础。
我在纽约地铁时开始搜索。我的孩子们在抱怨,四列火车立刻尖叫到车站,我把手放在耳朵上并畏缩了 - 噪音震耳欲聋。在城市,飞机,汽车,机械和声音的钝咆哮是生活的事实。没有逃脱的逃脱,我开始被它疯狂。我需要找到一个可以重新夺回和平感的地方。这个地方越安静,那就越轻松。我决定继续执行任务,以发现是否存在绝对的沉默。我前往地下两公里的修道院和一个矿山 - 都很安静,但不是地球上最安静的地方。我最兴奋的一个地方是明尼苏达州Orfield实验室的Anechoic Chamber。这是一个隔热的小房间,该房间是隔离的,隔离了混凝土和钢层,可以阻止外部噪音来源,内部衬有吸收所有声音的缓冲液。甚至地板也是悬挂的网眼,以阻止任何步行声。如果在20分贝上测量了软弱的耳语,则无声室是其中的16。同室房间比地球上任何其他地方都要安静得多。具有讽刺意味的是,大多数人远没有和平,而是发现其完美的安静令人沮丧。被剥夺了通常的放心的环境声音会造成恐惧 - 它解释了为什么感觉剥夺是一种折磨的一种形式。宇航员在NASA的Anechoic Chambers进行了部分培训,因此他们可以学会应对空间的沉默。声音的存在意味着事物在起作用;它照常业务 - 当缺乏声音时,这标志着故障。我听说在一个态室中呆了15分钟以上,可能会引起极端症状,从幽闭恐惧症和恶心到惊恐发作和听觉幻觉 - 您实际上开始听到事情。一位小提琴家在几秒钟后尝试了它,并在门上锤击,要求放开,因为他对沉默如此不安。我预定了45分钟的会议 - 很久以前没有人待在这么长时间之前。我感到担忧的原因有两个:我会发疯和撕裂
1 Ph.D. Ranchi植物学研究学者,植物学研究学者,兰奇大学科学学院副教授,兰奇摘要:该研究论文深入探讨了西孟加拉邦Paschim Medinipur地区的精选植物中存在的抗氧化剂和植物化学物质。 该研究旨在揭示这些植物的隐藏药物潜力,从而为药物和环境部门提供宝贵的见解。 进行了系统分析,以识别和量化所选植物物种中的抗氧化剂化合物和植物化学物质。 该研究采用了多学科方法,结合了先进的分析技术和方法,以评估所选菌群的抗氧化能力和植物化学谱。 通过细致的实验,该研究旨在建立一个综合数据库,详细介绍这些植物中存在的生物活性化合物的各种范围。 此外,研究还考虑了帕奇姆·麦迪尼普尔(Paschim Medinipur)的生态环境,承认环境因素对植物中抗氧化剂的合成的潜在影响。 这种整体方法不仅有助于理解局部植物的治疗潜力,而且还为这些植物的生态适应性提供了对区域条件的生态适应的见解。 这项研究的发现对新药,营养和环境保护策略的发展具有重要意义。 这项研究深入到帕奇姆·梅迪尼普尔(Paschim Medinipur)的植物园中隐藏的阿森纳(Arsenal),是迈向未来的一小步。1 Ph.D. Ranchi植物学研究学者,植物学研究学者,兰奇大学科学学院副教授,兰奇摘要:该研究论文深入探讨了西孟加拉邦Paschim Medinipur地区的精选植物中存在的抗氧化剂和植物化学物质。该研究旨在揭示这些植物的隐藏药物潜力,从而为药物和环境部门提供宝贵的见解。进行了系统分析,以识别和量化所选植物物种中的抗氧化剂化合物和植物化学物质。该研究采用了多学科方法,结合了先进的分析技术和方法,以评估所选菌群的抗氧化能力和植物化学谱。通过细致的实验,该研究旨在建立一个综合数据库,详细介绍这些植物中存在的生物活性化合物的各种范围。此外,研究还考虑了帕奇姆·麦迪尼普尔(Paschim Medinipur)的生态环境,承认环境因素对植物中抗氧化剂的合成的潜在影响。这种整体方法不仅有助于理解局部植物的治疗潜力,而且还为这些植物的生态适应性提供了对区域条件的生态适应的见解。这项研究的发现对新药,营养和环境保护策略的发展具有重要意义。这项研究深入到帕奇姆·梅迪尼普尔(Paschim Medinipur)的植物园中隐藏的阿森纳(Arsenal),是迈向未来的一小步。通过阐明帕斯奇·麦迪尼普尔(Paschim Medinipur)植物生物多样性的抗氧化剂和植物化学丰富性,这项研究致力于为可持续和自然风格的健康解决方案铺平道路。关键字:抗氧化剂:植物化学物质,帕奇姆·麦内尼普尔(Paschim Medinipur)地区,药用植物,生物多样性,自然治疗学简介:在一个世界上,慢性疾病造成不断增长的阴影,对天然抗氧化剂和植物化学的追求不仅是科学的追求;这是一个更健康的未来的使命。这是一首科学探究的歌曲,与传统的耳语和谐相处,有望解锁这个非凡地区的叶子和根源中的治愈秘密。