②日本的情况................................................................................................................................................ 9
能源系统可细分为相互连接的结构层次,每个层次的边界条件和目标都不同。对于热电生产,这些层次可能是:电价区(区域);热价区(城市);和生产基地(发电厂)。本文提出了一种多系统建模方法,用于分析热电联产 (CHP) 电厂的投资和运营,并在区域、城市或生产基地能源系统层面进行优化。该建模框架包含三个各自层次的能源系统优化模型,应用于瑞典电价区 SE3 的案例研究。建模层次分别进行优化,但通过电价和热价联系起来。结果表明,根据条件的不同,三个层次上优化的热电联产电厂投资和运营既可以一致,也可以不同。在生物质价格低且输往城市的输电能力中等拥堵的情况下,三个层次的结果通常是一致的。如果生物质价格上涨,就会出现差异,影响该地区热电联产厂的竞争力,而城市级热电联产投资主要由当地热能需求决定,对外部变化不太敏感。这些差异表明系统级别之间预期存在分歧的风险。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可证开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
A9) 诺福克海军造船厂有一个广泛的社区外展计划。由于 COVID-19,2020 年诺福克海军造船厂的社区外展计划并不正常。在过去的几年里,我们与朴茨茅斯公立学校建立了牢固的合作伙伴关系,我们的员工为朴茨茅斯公立学校的学生提供指导和阅读。我们全年参加了许多 STEM 活动,并在 Dry Dock Club 为朴茨茅斯公立学校 5 年级学生举办了一场 STEM 活动。诺福克海军造船厂还支持夏令营,例如朴茨茅斯的 Starbase Victory 和弗吉尼亚海滩、诺福克和纽波特纽斯的其他三个夏令营,帮助了 5,000 多名 STEM 领域的学生。诺福克海军造船厂指挥官与各种社区团体和 NNSY 阿拉巴马州进行了交谈
可再生能源(RES)主要由太阳能,风,生物量,水力发电,地热和潮汐能组成。这些能量被称为可再生,因为它们是自然,清洁且取之不尽的[1]。在过去的几十年中,由于化石燃料储量迅速和气候变化的关注,全球范围内的重点一直转移到RES作为能源发电的手段[2]。但是,由于自然资源的间歇性质(例如,太阳和风),低效率(相对于化石燃料)以及可再生能源技术(RET)的昂贵部署成本,因此向可再生能源的过渡并不像它所需的那样无缝[3]。生物量目前是为了克服这些修复的尝试,因为它比常规RET较低,效率更低,并且独立于自然资源[4]。有两种主要方法可以利用这种可再生能源,即燃烧和厌氧消化(AD)。燃烧是通过燃烧生物块(有机废物)和热量形式恢复能量的,可直接用于加热或进一步转化为电力。至于AD,它涉及有机物的生物降解(农产品,纸废物等)在没有氧气的情况下,细菌(可通过添加动物粪便或市政废水提供)。 这种生物学过程允许以沼气(甲烷和二氧化碳的混合物)的形式恢复能量。 与燃烧相比,AD为草本生物量提供了出色的势能,如[5]中报道。。这种生物学过程允许以沼气(甲烷和二氧化碳的混合物)的形式恢复能量。与燃烧相比,AD为草本生物量提供了出色的势能,如[5]中报道。广告过程已被证明是生产能量的一种可靠且可持续的方法,
• 开发了 AM 翼型冷却设计和校正系数,使燃气轮机入口温度相对于最先进的涡轮机提高 100°C,而无需增加冷却剂质量流量。
当我们知道,随着热量释放到大气中,超过70%的热力产生浪费了55%的能量输入,仍有巨大的未开发潜力,可以有效地向消费者提供能源(电力和热量)。额外的能量被浪费了,因为中央生产的电力在长距离内传输并分配给最终用户。cogogeneration确保将超过75%的原能转化为有用的功率和热量,然后在本地产生,然后在现场或附近消耗,从而最大程度地减少了转换,传输和分布损失。然而,当前的热电联产仅占欧盟热电产的27%。
干热岩储量丰富、分布广泛、绿色低碳,具有广阔的开发潜力与前景。本文提出了一种考虑干热岩热电联产的区域综合能源系统分布式鲁棒优化(DRO)调度模型。首先,在区域综合能源系统引入干热岩增强型地热系统(HDR-EGS),HDR-EGS通过与区域电网和区域热网协调运行,实现热电联产的热电解耦,增强系统风电接入空间。其次,在分时电价背景下,利用价格需求响应指导转移高峰负荷。最后,以区域综合能源系统调度周期内总成本最小化为优化目标,构建了考虑干热岩热电联产的区域综合能源系统DRO调度模型。通过模拟真实的小型区域综合能源系统,结果表明,HDR-EGS可以有效促进风电消纳,降低系统运行成本。
图 3-6。美国平均电池存储历史 O&M 成本数据($/kW-yr-DC,2022 年 $)按客户部门划分 ............................................................................................................................. 37 图 3-7。固定式储能电池化学市场份额及预测所有部门,2015-2030 年 ................................................................................................................................... 46 图 4-1。美国平均住宅分布式风电项目成本数据(2015-2022 年,2022 年 $) ...................................................................................................................... 52 图 4-2。美国平均小型商业分布式风电项目成本数据(2012-2022 年,2022 年 $) .................................................................................................................................... 53 图 4-3。美国平均中型商业分布式风电项目成本数据(2012-2022,2022 年美元) ............................................................................................................................................. 53 图 4-4。美国平均大型商业分布式风电项目成本数据(2012-2022,2022 年美元) ............................................................................................................................. 54 图 4-5。2013 年美国本土的年度日平均互补性(以皮尔逊相关系数表示) ............................................................................. 56 图 5-1。美国平均家用燃料电池系统资本成本(美元/千瓦-交流电,2022 年美元) ................................................................................................................................................ 61 图 5-2。美国商用燃料电池系统平均资本成本(美元/千瓦时-AC,2022 年美元) ........................ 62 图 5-3。美国家用燃料电池系统平均 O&M 成本(美元/千瓦时,2022 年美元) ........................ 63 图 5-4。美国商用燃料电池系统平均 O&M 成本(美元/千瓦时,2022 年美元) ........................ 63 图 5-5。太阳能光伏 + 燃料电池混合能源系统图 ............................................................................. 65 图 5-6。使用 M2FCT 开发的催化剂的膜电极组件性能测试结束进展,2021-2023 年 ............................................................................................................. 67 图 6-1。美国年度商业热电联产安装量(2012-2022 年) .............................................................. 70 图 6-2。美国年度工业热电联产安装量(2012-2022 年) .............................................................. 71 图 6-3。美国平均商业热电联产系统资本成本(美元/千瓦时,2022 美元).................................... 80 图 6-4。美国平均工业热电联产系统资本成本(美元/千瓦时,2022 美元)........................ 81 图 6-5。美国平均商业热电联产系统运营和维护成本(美元/千瓦时,2022 美元)........................ 82 图 6-6。美国平均工业热电联产系统运营和维护成本(美元/千瓦时,2022 美元)........................ 82 图 7-1。按行业部门按数量和兆瓦-交流划分的热电联产系统数量和总容量... 89 图 7-2。制造业热电联产系统数量和总容量(按数量和 MW-AC 划分)(按 3 位数 NAICS)............................................................................................................. 90 图 7-3。热电联产系统数量和总容量:按数量和 MW-AC 划分的前 10 个五位数 NAICS 行业............................................................................................................. 91 图 7-4。电池存储的年度和累计市场预测 ............................................................................. 96
摘要:本研究工作综合了四种多联产方案的新型配置分析的能源、经济和环境方面,这些方案旨在满足包含 12 套住宅的多户建筑的需求。该设计旨在满足可再生能源 (RES) 的需求(水、电、热和冷空气),特别是通过选择光伏和光伏热能板、热电发电机和生物质作为辅助设备。电力可从电网获得,不计划电力储存。水和冷却可以通过配置多联产替代方案的替代技术来生产。案例研究位于西班牙地中海沿岸城市瓦伦西亚。Design Builder Clima 估计了需求计算,并在 TRNSYS 中对系统性能进行了建模。海水淡化与 EES 模型相关联。结果表明,建议的方案可大幅节省能源和二氧化碳。如果将安装的影响与传统的外部供应进行比较,则应用的创新生命周期分析进一步提高了四种配置的累积二氧化碳节省量。电动选项(结合热泵和反渗透进行冷却和海水淡化)因其可靠性、较低的投资成本和环境影响而成为最具吸引力的解决方案。
摘要 — 随着可再生能源 (RES) 的普及,从经济和环境角度来看,对这些可再生能源进行兼容调度的需求日益增加。由于热电联产 (CHP) 发电机组的高效和快速响应特点,这些机组可以使系统免受 RES 波动的影响。为了应对与 RES 相关的运营挑战,本文旨在安排低温储能 (CES) 的套利,不仅可以最大化其所有者,还可以最小化 RES 的变化。另一方面,在所提出的模型中,插电式电动汽车 (PEV) 被用作负责任的负载,通过改变消费者的消费模式来平滑系统的负载曲线。所提出的问题被建模为二阶锥规划,并通过支配群搜索优化算法求解。为了验证所提出方法的适用性和有效性,已经执行了四个不同的案例研究。