摘要:在废水和城市河流中,曲霉科细菌富含多聚(乙二醇)(PET)微塑料,但宠物降级机制仍不清楚。在这里,我们通过结合显微镜,光谱,蛋白质组学,蛋白质建模和遗传工程来调查了废水分离株的comamonas testosteroni kf-1。与宠物膜上的较小凹痕相比,扫描电子显微镜显示出明显的宠物颗粒,导致30天培养中的小纳米颗粒(<100 nm)的丰度增加了3.5倍。红外光谱法主要捕获了碎片颗粒中的水解裂解。溶液分析进一步证明了PET低聚物BIS(2-羟基乙基)苯二甲酸酯的双重水解为生物可用的单体terephathathate。补充乙酸盐,一种常见的废水共覆盖物,促进了细胞生长和宠物碎片。仅检测到一种,仅检测到一种,这在仅乙酸盐和仅宠物的条件下发现。该水解酶结构的同源性建模说明了尽管序列不同,但类似于报道的PET水解酶的底物结合。缺乏该水解酶基因的突变体无能为力低聚物水解,宠物碎片降低了21%。基因的重新插入恢复了两个功能。因此,我们已经确定了在废水comamonas中降低宠物降解水解酶的本构生产,该水解酶可以用于塑料生物转化。关键词:塑料废物,废水,生物降解,显微镜,蛋白质组学,PET水解酶
检测从Terahertz到可见光谱结构域的光脉冲的电场波形提供了平均场波形的完整特征,并具有量子光学的巨大潜力,时间域(包括频率bomb)光谱镜,高谐波,高谐波,高旋转性生成和Attosecond Science,可举几例。可以使用电磁抽样进行场分辨的测量,其中激光脉冲通过与另一个较短持续时间的另一个脉冲的相互作用来表征。测得的脉冲序列必须由相同的脉冲组成,包括其相等的载体 - eNvelope相(CEP)。由于宽带激光增益介质的覆盖率有限,在中红外创建CEP稳定的脉冲序列通常需要非线性频率转换,例如差异频率产生,光学参数放大或光学整流。这些技术以单次通道的几何形状运行,通常会限制效率。在这项工作中,我们展示了对谐振系统(光学参数振荡器(OPO))中产生的脉冲的现场分解分析。由于固有的反馈,该设备在给定的输入功率水平上表现出相对较高的转换效率。通过电磁抽样,我们证明了用CEP稳定的几个周期纤维激光脉冲泵送的亚谐波OPO会产生CEP稳定的中红外输出。完整的振幅和相信息使色散控制直接控制。我们还直接在时间域中直接确认了Opo的外来“翻转”状态,在时域中,连续脉冲的电场具有相反的符号。
这项研究探讨了将桉树素提取物(ELE)作为一种创新的伤口敷料策略,以解决抗生素耐药性的威胁及其相关并发症在伤口细菌感染中的并发症。该研究基于对药用植物固有的抗菌特性以及纳米材料的有利释放特性的识别,尤其是纳米材料的有利释放特性,尤其是电纺纳米纤维,这些纳米纤维紧密模仿细胞外基质。利用静电纺丝技术,用羟基甲藻素提取物制造纳米纤维垫,使用扫描电子显微镜(SEM),傅立叶 - 转换基础(FTIR)(FTIR)光泽性(FTIR)光泽性(x-ray diffraction(xrd)(xrd),使用扫描电子显微镜(SEM),其结构和形态属性进行了全面表征。该研究采用60只雄性Wistar大鼠,将其分为PVA/ELE,硝基呋喃酮,正常盐水和PVA伤口敷料的组。微生物和组织病理学分析是在感染后特定的间隔进行的。结果揭示了PVA/ELE的显着抗菌功效,与对照组相比,细菌计数的大幅度降低证明了这一点。此外,PVA/ELE组表现出优质的伤口尺寸减小,上皮化和胶原蛋白沉积,类似于硝基呋喃酮组观察到的影响。这些发现表明PVA/ELE具有明显的抗菌潜力,并促进了先进的伤口治疗过程。因此,这种富含Ele的电纺纳米纤维配方是传统伤口护理的一种有希望且可行的替代方案,在打击细菌感染和促进伤口愈合方面具有多方面的益处。
自1900年代初期其在丙酮丁醇 - 乙醇(ABE)发酵中的第一个工业应用以来,梭状芽胞杆菌发现了大量的生物量生物量生物填充应用。Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H 2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives.有利地,几种梭形菌株能够使用廉价的原料,例如木质纤维素生物量,食物浪费,甘油或C1-气(CO 2,CO),以赋予它们作为较少依赖化石燃料和减少绿化温室气体发射的流程的主要参与者。本综述旨在提供旨在开发梭状芽胞杆菌介导的生物量发酵过程的研究进度的调查,尤其是关于代谢工程的应变改善。
基于聚乙烯醇(PVA)的生物塑料是在日常生活中取代常规塑料的一种有前途的替代方法。PVA是具有许多优点的可生物降解聚合物,例如无毒,低成本且易于加工。8,9在印度尼西亚,生物复合塑料公司自2009年以来一直在运营。他们将生物聚合物作为生物塑料矩阵发展。中间,pt。Inter Aneka Lestari Kimia或更名为Enviplast正在开发生物聚合物,甚至将它们出口到全球的各个国家。但是,基于PVA的生物复合材料往往具有较差的机械性能。在某些温度和条件下的10,11 PVA lms可以溶于水中,因此将PVA用作复合材料非常有限,需要修改。12 PVA的性质取决于分子量和产生PVA时使用的乙酸乙烯酯的长度所用的水解程度。PVA的分子量通常为20 000 - 400 000 g mol -1。13使用天然bre在PVA矩阵中添加llers或加固可以解决PVA应用的限制。天然bres是环保材料,可以根据植物,动物和矿物质得出,具体取决于提取的来源。14天然已被用作生物复合材料的加固,适用于许多工业应用。需要15,16特殊处理才能将纤维素与植物细胞壁分离以从植物中获得天然bre。17 - 19
这项研究的目的是使用傅立叶变换红外(FTIR)分析来自热解聚苯二甲酸酯(PET)的化学成分。在与两个冷凝器(24°C)相连的批处反应堆中,将pET颗粒在120至277.7°C之间的温度下进行105分钟。冷凝器设置为反应器的输出,并关闭所有系统。第一个冷凝器直接连接到反应器,而第二个冷凝器连接到第一个冷凝器。。在第一个冷凝器和第二个冷凝器中获得了具有独特气味的无色液体样品。残留物是黑色和坚固的。两个冷凝器样品都包含相似的基团,例如OH组,C-H组,C = O组和C-H组。产品中最优势的化合物是苯甲酸和水作为侧产物。这种热解过程通过将碳氢化合物链分解成短链来表明降解和氧化反应的发生。这会导致苯甲酸氧化以产生苯甲酸和水。这项研究通过了解热解后PET塑料中包含的化合物对PET塑料废物的管理产生了影响。最后,这项研究可能是解决可持续发展目标(SDG)中当前问题的问题解决者。
聚乙烯呋喃酸盐(PEF)是一种生物基塑料,类似于合成的聚对苯二甲酸酯(PET),该甲苯二甲酸酯(PET)是由平台化学2,5-羟基甲基甲基膜(HMF)产生的。围绕PEF的许多文献都集中在单位流程上,几乎没有考虑其可持续性和经济可行性。在这项全面的批判性审查中,从原料到聚合和上游应用程序的PEF生产过程的整个过程都得到了严格的研究。识别能够有效生产PEF的单个途径,同时考虑了经济生存能力和环境可持续性。对于每个单位操作,总结了最新的技术发展,并根据过程效率提出建议。从生命周期评估(LCA)和技术经济分析(TEA)中收集了发现的发现,促进了对PEF生产的环境可持续性和经济可行性的最大潜力的识别。
sspa«白俄罗斯NAS的科学实行材料研究中心»,220072,明斯克,白俄罗斯B核研究所联合研究所,141980年,俄罗斯dubna,俄罗斯C大学“ Dubna”,141982,DUBNA,俄罗斯,可再生能源和环境技术中心,Tabik e Aripia,Tabia obia of Aripia of Aripia of Aripia of Aripia of Aripia of Aripia,SASAUKIA,SASAICA,SA.14。 1162年,安曼(Amman),约旦F资源与环境系,冶金学院,东北大学,伊利亚宁省,Shenyang,110819,PR中国G民用与环境工程系,香港理工学院,Hong Polytechnic University,Hong Hong Hong Hong Hong Hong Hong Hong H MIIT材料的关键材料,用于新的能源和储存的关键材料,化学,化学,化学技术,化学技术,Harb,Harb harb harb harb公关中国乌拉尔联邦大学,伊卡特林堡Mira St. 19Sechenov First Moscow State医科大学,莫斯科,119435,俄罗斯Sechenov First Moscow State医科大学,莫斯科,119435,俄罗斯
肿瘤免疫疗法是解决常规肿瘤疗法的局限性(例如化学疗法和放疗)的有前途的方法,这些方法通常具有副作用,并且无法防止复发和转移。但是,免疫激活在肿瘤免疫疗法中的有效性和可持续性仍然具有挑战性。肿瘤免疫原性细胞死亡,其特征是免疫原性物质,损伤相关的分子模式(抑制作用)和与肿瘤相关的抗原(DTC)提供了潜在的溶液。通过包含更多免疫原性抗原和刺激因子来增强DTC的免疫原性,可以开发出免疫原性细胞死亡(ICD)癌症疫苗作为免疫疗法的强大工具。将ICD纳米诱导剂整合到常规疗法中,例如化学疗法,光动力疗法,光热疗法,声动力疗法和放射疗法提出了一种新的策略,以增强治疗效果并有可能改善患者结局。临床前研究已经确定了许多潜在的ICD诱导剂。但是,将这些发现有效地转化为临床相关的应用仍然是一个至关重要的挑战。本综述旨在通过为基于ICD的癌症疫苗的体外制备提供宝贵的见解来为这项努力做出贡献。我们探索了既定的ICD归纳工具,然后探索了个性化ICD归纳策略和疫苗设计。通过共享这些知识,我们希望刺激基于ICD的癌症疫苗领域的进一步发展和进步。
摘要:灯笼在光电子中主要用于掺杂剂,以增强半导体设备的物理和光学特性。在这项研究中,灯笼(III)氢氧化物纳米颗粒(LA(OH)3 NP)用作聚乙基亚胺(PEI)功能化的氮(N)掺杂的石墨烯量子点(PEI- N GQD)的掺杂剂。通过绿色新颖方法在单一步骤中从LA(NO)3中制备3个NPS掺杂的PEI- nps-n GQD纳米复合材料,并以傅立叶转换红外光谱(FT-IR)为特征(TEM)。 在n型Si晶圆上沉积,洛杉矶(OH)3 nps掺杂的PEI- N GQDS纳米复合材料形成Schottky Diodes。 I -V特性和二极管的光响应是根据照明强度在0-110 mW cm -2和室温下的照明强度的函数。 发现二极管的直接拟合比和理想性因子降低,而Schottky屏障和串联电阻随着增强的照明而增加。 作为光电探测器,LA(OH)3 nps掺杂的PEI- N GQD/N-SI异质结的表现出3.9×10 - 3 AW - 1在22 mW cm-2下,在-0.3 V偏见下,在22 mW cm-2下,最大检测到8.7×10 8 JONES的最大检测,并在8.7×10 8 JONES中进行了研究。呈现LA(OH)3 NPS掺杂的PEI-N GQD的结构,电气和光电特性,表明这些纳米复合材料对于光电应用程序有望有望。通过绿色新颖方法在单一步骤中从LA(NO)3中制备3个NPS掺杂的PEI- nps-n GQD纳米复合材料,并以傅立叶转换红外光谱(FT-IR)为特征(TEM)。在n型Si晶圆上沉积,洛杉矶(OH)3 nps掺杂的PEI- N GQDS纳米复合材料形成Schottky Diodes。I -V特性和二极管的光响应是根据照明强度在0-110 mW cm -2和室温下的照明强度的函数。发现二极管的直接拟合比和理想性因子降低,而Schottky屏障和串联电阻随着增强的照明而增加。作为光电探测器,LA(OH)3 nps掺杂的PEI- N GQD/N-SI异质结的表现出3.9×10 - 3 AW - 1在22 mW cm-2下,在-0.3 V偏见下,在22 mW cm-2下,最大检测到8.7×10 8 JONES的最大检测,并在8.7×10 8 JONES中进行了研究。呈现LA(OH)3 NPS掺杂的PEI-N GQD的结构,电气和光电特性,表明这些纳米复合材料对于光电应用程序有望有望。关键字:稀土元素,灯笼(III)氢氧化物掺杂,石墨烯量子点,绿色方法,纳米复合二极管,光敏性