a. 太阳能系统的创新电力电子技术 b. 两用光伏技术 c. 太阳能供电直流微电网技术 d. 太阳能系统的网络安全(DOE 交叉学科:电网现代化、能源部门网络安全) e. 配电可靠性可视性(DOE 交叉学科:电网现代化) f. 用于 Gen3 CSP、商用 CSP(Gen2 CSP)或聚光太阳能工业工艺热(SIPH)(ESS:工业热射流)的聚光太阳能热发电技术 g. 太阳能系统的可负担性、可靠性、性能和制造
所考虑的能源生产技术仅包括陆上和海上风电、屋顶和发电厂的太阳能光伏发电、聚光太阳能发电、太阳热能、地热发电和地热能、水力发电以及少量潮汐和波浪能。所考虑的最重要的电力存储技术是电池,尽管抽水蓄能、现有水力发电大坝蓄能和聚光太阳能电力存储也得到了处理。我们发现不需要存储时间超过四小时的电池。相反,通过将电池与四小时存储连接在一起可以获得长时存储。在敏感性测试中,我们发现即使电池价格高出 50%,总成本也只会比其基本估计高出 3.2%。
正如政府间气候变化专门委员会 (IPCC) 第六次评估报告 (AR6) (IPCC, 2021) 所述,“气候变化对人类福祉和地球健康构成威胁”,这是一个非常有信心的肯定陈述。根据同一报告,“到 2021 年 10 月宣布的国家自主贡献 (NDC) 暗示的 2030 年全球温室气体 (GHG) 排放量,可能使 21 世纪变暖超过 1.5 C,并使将变暖限制在 2 C 以下变得更加困难”(IPCC, 2021)。地球温度上升导致更多极端天气事件,如热浪、强降水、干旱和热带气旋。这些事件对粮食安全、人类健康和生物多样性产生负面影响。要将全球变暖控制在 1.5 至 2.0 C 水平之间,
图 1. 独立于聚光太阳能发电的电热储能独立 ETES 应用 热输入和输出 还有许多方法可以将 TES 集成到热转电、热转热和电转热应用中,例如用于聚光太阳能发电 (CSP)、建筑、区域供热和工业过程热应用的应用中。这些类别可以进一步分为低温和高温应用。高温热能存储 (HTTES) 热转电 TES 应用目前与用于发电的 CSP 部署相关。带有 CSP 的 TES 已在太阳能资源丰富的美国西南部部署,并已证明其对电网的价值。电转热和热转热 HTTES 应用为能源密集型工业过程热应用脱碳提供了巨大潜力 [8, 9],例如炼铁