a 岛根大学工业创新组织下一代 TATARA 联合创造中心,日本松江 b 田纳西大学诺克斯维尔分校,美国田纳西州诺克斯维尔 c 阿利坎特大学科学学院,第二阶段,应用物理系,西班牙阿利坎特 d 英国原子能管理局,卡勒姆聚变能源中心,卡勒姆科学中心,阿宾登,奥克森,OX14 3DB,英国 e 密歇根大学核工程与放射科学系,密歇根州安娜堡,48109,美国 f 巴黎萨克雷大学,CEA,金属冶金物理研究中心,91191,伊维特河畔吉夫,法国 g 太平洋西北国家实验室,华盛顿州里奇兰,美国 h 橡树岭国家实验室材料科学与技术部,田纳西州橡树岭 37831,美国 i Forschungszentrum J¨ulich GmbH,能源和气候研究所,52425 J¨ulich,德国 j 国立核能研究大学莫斯科工程物理学院,Kashirskoe sh.31,115409,莫斯科,俄罗斯联邦 k 加利福尼亚大学材料科学与工程系,美国加利福尼亚州洛杉矶 l 克莱姆森大学机械工程系,美国南卡罗来纳州克莱姆森 29623 m 克莱姆森大学材料科学与工程系,美国南卡罗来纳州克莱姆森 29623 n 密歇根大学材料科学与工程系,美国密歇根州安娜堡 48104 o 瑞典皇家理工学院核工程系,SE106 91 斯德哥尔摩,瑞典 p 麻省理工学院,美国马萨诸塞州剑桥 q 日本原子能机构,日本茨城县中郡东海村 r 材料科学与化学工程系,石溪大学,石溪,纽约,美国
我们的目标是通过与液氢技术的合作,实现无液氦小型聚变反应堆的社会化,实现不受资源限制的无碳发电和先进能源利用,以及在聚变能以外的领域(例如医疗应用、生物技术和移动性)推广超导应用。
DE-FOA-0003361 聚变创新研究引擎 (FIRE) 合作旨在创建聚变能源科学和技术创新生态系统。FES 很高兴宣布 FIRE 合作的第一轮奖项。第一轮项目支持各种概念所需的材料和技术。它们包括在爱达荷国家实验室开发核包层测试能力、在田纳西大学诺克斯维尔分校开发材料、在麻省理工学院开发材料测试和高级模拟能力、用于惯性聚变概念的目标喷射器技术、在萨凡纳河国家实验室开发聚变燃料循环测试能力。
美国能源部 (DOE) 在科学办公室聚变能源科学 (FES) 项目的领导下,已采取措施通过公私合作促进聚变能源商业化。这些努力平均占 2020 至 2023 财年 FES 总资金义务的 1.2%(约 3600 万美元)。其余 FES 资金义务(平均约 98.8%,即约 7.408 亿美元)用于研究等离子体科学、国际合作和维护设施等。美国能源部官员表示,对促进商业化的举措的投资规模相对有限,这在很大程度上反映了聚变能技术的不成熟状态,美国政府问责署在 2023 年 3 月对此进行了报告。美国能源部的另一个实体——美国能源部高级研究计划局 (ARPA-E)——在 2020 财年承诺投资近 5000 万美元,在 2021 年至 2023 财年平均承诺投资约 870 万美元用于聚变能商业化项目。
拟议规则考虑了目前计划在近期部署的用于商业和研发目的的聚变机。2 “近期”一词不用于指代特定时间范围。工作人员考虑了制定本规则时工作人员所知的聚变科学和技术方法的某些特征和风险水平。3 拟议规则并非旨在解决与当今正在研究和开发的技术有显著不同的推测性聚变技术(例如,当今的设计类型包括托卡马克、仿星器、z 箍缩和场反转,燃料包括氘-氚、氘-氦-3 和质子-硼-11)。拟议规则使用了 ADVANCE 法案对“聚变机”的定义。聚变机器被定义为“一种能够:(1)通过聚变过程将原子核转化为不同的元素、同位素或其他粒子;(2)直接捕获和使用所得产物,包括粒子、热量或其他电磁
• 总计 300 个 CAT(其中 90 个为 L6)英格兰、威尔士、北爱尔兰 o 3000 小时名义学习时间,其中 900 小时为 L6 • 总计 480 个 SCQF(其中 60 个为 L9 – 苏格兰级别)苏格兰 • 定义融合本科课程并不是必需的,因为不直接为此进行合作投资,但是,如果作为合作案例的额外好处的一部分呈现,定义本科课程中融合相关/特定内容的名义学习小时数将很有用。
• CFS 进行商业化,MIT 进行研究 • SPARC 及其 REBCO 磁铁回答了关键问题:ARC 的高 B、高增益、紧凑尺寸的总体战略是否“有效” • 我们目前的估计是,只有少数几个地方(如氚增殖)尚未证明 ARC 的“基础”科学 • 但需要进行大量的研发才能改善 ARC 的经济前景,特别是如果我们共同希望快速发展它的话。这引出了我今天要讨论的主题
在建造一座全面运作的核聚变发电厂之前,还有很长的路要走。目前,各种核聚变概念中还没有一个原型发电厂。而且,不仅商业规模的核聚变发电厂的技术可行性尚未得到证实,任何此类发电厂的商业可行性也必须得到证明。换句话说,如果要将核聚变发电厂的愿景变为现实,将需要克服许多重大挑战。许多专家估计,第一座原型或商业发电厂将在 20 到 25 年后才能实现。如果要实现这一点,就需要维持核聚变研究资金,同时推动必要的发展,所有利益相关者都需要密切合作。一些领域,尤其是初创企业界,正在讨论 10 到 15 年的较短时间框架。然而,鉴于目前的研究状况,第一座发电厂似乎不太可能在这么短的时间内建成。因此,核聚变无法为实现法定气候目标做出贡献,也无法在 2045 年之前在德国实现温室气体净零排放,也无法在 2050 年之前在欧洲实现这一目标。核聚变做出的任何贡献最多也只能在这段时期结束时实现,而且会相应微不足道。尽管如此,核聚变发电厂可以帮助满足本世纪下半叶全球电力需求的预期增长。