与熔融盐应用相关:1。在干燥/固化和地质聚合度的程度与开放孔隙度的过程中的水流途径2。最大量的空心浓圈添加与有效的热导率3。地质聚合物矩阵与添加剂之间的界面的稳定性4。na来自激活剂溶液与化学稳定性(阳离子扩散,离子交换等)5。地球聚合物的总体机械性能
由 Predici 提供支持的 Petro-SIM 聚合物提供了一流的模拟软件包,用于模拟稳态和动态聚合物过程,包括解聚。Predici 提供动力学聚合软件。此外,它还擅长模拟从自由基共聚到乳液、悬浮聚合、齐格勒-纳塔催化系统和其他聚合动力学中的活性聚合的解聚和聚合物降解动力学。独特的 Galerkin hp 方法可以严格计算任何形式和任何聚合度的完整分子量分布,并具有许多附加属性。
镉(CD)是最危险的微量金属之一,Rapeseed是世界上主要的石油作物,其木质纤维素残基可用于痕量金属植物植物修复和纤维素乙醇共生产。在这项研究中,我们检查了两个不同的菜籽品种可以在72.48和43.70 ug/g干茎上积聚CD,这是所有主要农业粮食作物中最高的CD积累。CD的积累显着增加了果胶沉积,这是痕量金属与木质纤维素结合的主要因素。同时,CD蓄积的菜籽茎含有大量降低的壁聚合物(半纤维素,木质素)和纤维素的聚合度,从而改善了木质纤维素酶水解。值得注意的是,通过显着提高纤维素可及性和木质纤维素孔隙率,进行了三种最佳化学预处理,以增强生物质酶糖含量和生物乙醇的产生,以及用于
摘要:功率变压器对于最常见的电网的可靠性至关重要,该电网最常见于牛皮纸隔热并浸入矿物油中,其中纸张的老化状态主要与变压器的运行寿命相关。聚合度(DP)是评估绝缘纸的老化状况的直接参数,但是现有的DP测量通过粘度方法具有破坏性和复杂性。在本文中,引入了Terahertz时域的表格(THZ-TDS),以达到对绝缘纸DP的快速,无损的检测。绝缘纸的吸收光谱表明,在1.8和2.23 THz处的特征峰区都表现出与DP的对数线性定量关系,并且通过对不同类型的绝缘纸进行上述关系来确认它们的普遍性。傅立叶变换红外光谱(FTIR)分析和分子动力学建模进一步表明,1.8和2.23 THz分别与水 - 纤维素氢键强度和无定形纤维素的生长有利相关。本文证明了将THZ-TDS应用于绝缘纸中DP的无损检测并分配了特征吸收峰的振动模式的生存能力。
摘要:纤维素溶液在制成各种再生产品 (如纤维、薄膜) 之前几乎不可避免地需要进行储存,尤其是在工业生产中。因此,有必要评估储存时间和温度对纤维素在感兴趣的 TBAH 基溶剂 (包括 TBAH/H 2 O、TBAH/H 2 O/DMSO、TBAH/H 2 O/尿素) 中溶解状态的影响,以及对相关再生产品 (本文制备了薄膜进行评估) 的力学性能的影响。利用偏光显微镜照片和 Stormer 粘度分析了纤维素在这些溶剂中以及储存过程中的溶解状态。针对感兴趣的 TBAH/H 2 O/DMSO 溶剂,讨论了储存时间和温度对溶液粘度和纤维素聚合度的影响。确定了不同贮存温度下纤维素发生明显降解的临界贮存时间,制备了一系列贮存时间为0~200小时的再生纤维素膜,探讨了纤维素/TBAH/H 2 O/DMSO溶液再生纤维素膜的最佳贮存时间和强化机理,可为纤维素/TBAH/H 2 O/DMSO贮存时间和温度的研究提供参考,尤其可为中试生产等提供参考。
20 世纪 20 年代末,CV Raman 发现当某种材料暴露在光线下时,其分子会非弹性散射一小部分入射光子。这种非弹性散射会产生较低能量(斯托克斯)和较高能量(反斯托克斯)光子 [1]。此后不久,Pringsheim 推测反斯托克斯荧光可用于降低材料的温度 [2]。直到 20 世纪末,Epstein 等人才在掺镱氟化物玻璃中通过实验实现了固体光学冷却 [3]。自这一里程碑式的成就以来,经过系统研究,人们在几类稀土掺杂晶体和玻璃中观察到激光冷却 [4–7]。迄今为止,固态光学制冷达到的最低温度是晶体 Yb:YLiF 4,低至 91 K [8]。在激光冷却研究活动的前 24 年中,对光学冷却玻璃的观察仅限于非硅酸盐 [5]。随着 Yb 掺杂石英光纤和光纤预制棒冷却的成功,这一模式最近发生了转变 [9–19]。高聚合度和强 Si-O 键使玻璃石英在机械和化学耐久性方面优于氟化物系统(例如 ZLBAN 系列)。这些特性使硅酸盐成为光纤激光器应用的更理想材料。在高功率光纤激光器中,需要进行热缓解以保持材料和光束轮廓的完整性 [20–26]。反斯托克斯荧光已被建议作为一种可行的激光器热缓解方法 [27–29]。这种辐射平衡光纤激光器 (RBL) 不会升温,因为它可以有效地散发出运行过程中产生的废热。尽管今年已有基于硅的辐射平衡设备在开创性工作中被报道 [30, 31],但这些
由于材料之间的晶格错误匹配,SI底物上窄带III – V材料的大规模整合仍然是一个挑战。[1,2]纳米级开口的外延生长降低了源自III – V/SI界面以传播到活动设备的缺陷的可能性,并证明了表现优势。[3]其他剩余的挑战是模式技术,[4]小型大小,高模式密度和经济高效的处理具有吸引力。高密度模式的一种可能的光刻溶液是块共聚物(BCP)光刻。[5–7]该技术依赖于自组装,这意味着该分辨率不是由clas的局限性设置的,例如辐射波长或接近度效应。[8,9] BCP光刻分辨率极限主要是由其总体聚合度和组成块不信用的程度设定的。[10]该技术是低成本的,允许在高图案密度下转移图案转移 - 至少至12 nm螺距。[11,12]一种特殊的材料,聚(苯乙烯) - 块-poly(4-乙烯基吡啶)(PS-B -P4VP),是所谓的高χBCP,即块之间具有很高的缺失性,这使自组件能够最低10 nm lamelar powd。[13]通过控制聚合物分子量,聚合物块的不混溶,聚合物块的体积分数,底物表面能和表面形象,如果向聚合物链提供足够的迁移率,则可以实现自组装。[14]可以通过添加热量来提供所需的迁移率,[15]通过介入聚合物可溶性蒸气,[16,17]或两者的组合。[18]许多设备应用程序受益于模式对齐,为此,可以使用定向自组装(DSA)来控制模式的定位。[5,6,19–22]然后,通常使用电阻的电子或光子暴露创建引导模式,并且指导是通过改变表面能量或创建不同地形来完成的。[19]
摘要 关键信息 首次通过 CRISPR/Cas9 介导的淀粉分支酶基因 SBE2 诱变生产高直链淀粉木薯。摘要 高直链淀粉木薯 ( Manihot esculenta Crantz) 适用于淀粉工业应用和生产供人类食用的更健康的加工食品。在本研究中,我们报告了通过 CRISPR/Cas9 介导的淀粉分支酶 2 (SBE2) 诱变生产高直链淀粉木薯。在所有再生植物中均发现了 SBE2 两个目标外显子的突变;这些突变包括核苷酸插入以及 SBE2 基因中的短或长缺失,被分为 8 个突变系。三个突变体 M6、M7 和 M8 在 SBE2 的第二个外显子中有长片段缺失,没有表现出 SBE2 蛋白的积累。从田间收获后,与野生型相比,这些突变体中的直链淀粉(表观直链淀粉含量高达 56%)和抗性淀粉(高达 35%)含量明显较高,导致快速碘染色后淀粉颗粒呈现深蓝色,淀粉粘度改变,糊化温度和峰值时间更高。进一步的 1 H-NMR 分析表明,淀粉支链度显著降低,支链淀粉的短链减少(聚合度 [DP] 15–25),长链增加(DP>25,尤其是 DP>40),这表明木薯 SBE2 在支链淀粉生物合成过程中催化短链的形成。在淀粉中还检测到了从 A 型到 B 型晶体的转变。我们的研究表明,CRISPR/Cas9 介导的木薯淀粉生物合成基因诱变是产生具有有价值的淀粉特性用于食品和工业应用的新品种的有效方法。
电荷转移解离质谱法 (CTD-MS) 已被证明可在气相中诱导生物离子的高能碎裂,并提供类似于极紫外光解离 (XUVPD) 的碎裂光谱。迄今为止,CTD 通常使用动能介于 4-10 keV 之间的氦阳离子来引发自由基导向的分析物碎裂。然而,作为一种试剂,氦气最近已被列为一种越来越稀缺和昂贵的关键矿物,因此本研究探索了使用更便宜、更易获得的试剂气体的潜力。使用各种 CTD 试剂气体(包括氦气、氢气、氧气、氮气、氩气和实验室空气)对聚合度为 4 的模型肽缓激肽和模型寡糖 k-角叉菜胶进行碎裂。CTD 结果还与低能碰撞诱导解离 (LE-CID) 进行了对比,后者在同一个 3D 离子阱上收集。使用恒定的试剂离子通量和动能,所有五种替代试剂气体都产生了与 He-CTD 相比非常一致的序列覆盖率和碎裂效率,这表明试剂气体的电离能对生物离子的活化影响可以忽略不计。所有气体的 CTD 效率范围为缓激肽的 11-13% 和 k -角叉菜胶的 7-8%。在这些狭窄的范围内,缓激肽的 CTnoD 峰的丰度和缓激肽的 CTD 碎裂效率都与 CTD 试剂气体的电离能相关,这表明共振电荷转移在该肽的活化中起的作用很小。缓激肽和 k-角叉菜胶的大部分激发能来自电子停止机制,该机制由试剂阳离子与生物离子最高占据分子轨道 (HOMO) 中的电子之间的长程相互作用描述。CTD 光谱没有提供任何证据表明生物离子与氢气、氧气和氮气等反应性更强的气体之间存在共价结合产物,这意味着试剂离子的高动能使它们无法进行共价反应。这项工作表明,任何测试的替代试剂气体都是未来 CTD-MS 实验的可行选择。© 2021 Elsevier BV 保留所有权利。
摘要 分子动力学 (MD) 模拟对于预测不同分子体系的物理和化学性质至关重要。虽然全原子 (AA) MD 提供了高精度,但其计算成本高昂,这促使了粗粒度 MD (CGMD) 的发展。CGMD 将分子结构简化为具有代表性的微珠,以降低成本,但会牺牲精度。像 Martini3 这样的 CGMD 方法,经过实验数据校准后,在各个分子类别中具有良好的泛化能力,但往往无法满足特定领域应用的精度要求。本研究引入了一种基于贝叶斯优化的方法来优化 Martini3 拓扑结构,使其能够适应特定应用,从而确保精度和效率。优化后的 CG 势能适用于任何聚合度,提供与 AA 模拟相当的精度,同时保持与 CGMD 相当的计算速度。通过弥合效率和精度之间的差距,该方法推动了多尺度分子模拟的发展,使各个科学技术领域能够以经济高效的方式发现分子。 1. 引言粗粒度分子动力学 (CGMD) 1,2 已成为材料开发的重要工具,为了解聚合物 3 、蛋白质 4 和膜 5 等复杂分子系统提供了关键信息。CGMD 的主要优势在于它能够在更大长度尺度和更长时间范围内探索分子现象,超越了传统全原子分子动力学 (AAMD) 6–8 模拟的能力,后者通常提供更高的分辨率,因此特别擅长捕捉详细的界面相互作用 9 。具体而言,CGMD 通过将原子团有效地表示为珠子 10–15 来实现这种加速,从而将模拟能力在时间上从皮秒扩展到微秒,在空间上从纳米扩展到微米。因此,粗粒度技术为传统 AAMD 无法获得的复杂分子现象提供了前所未有的洞察,从而能够研究聚合物自组装行为等复杂现象 16 。新兴的CGMD建模工具集依赖于两个关键组件来学习潜在的分子间关系:珠子映射方案和珠子间相互作用的参数化。这些组件的开发主要采用两种方法:自上而下10–12和自下而上13–