在Simmental Australia数据库中以及通过任何其他方式显示任何此类DNA测试的结果,例如网站动物查询。Simmental Australia有权在研究和开发中使用DNA信息,遗传信息的构建和任何其他商业
在激光驱动惯性约束聚变 (ICF) 中,高强度激光用于驱动胶囊达到核聚变所需的压力和温度条件 [1]。这需要多束重叠的激光束在聚变胶囊周围的等离子体中传播。等离子体介导激光束之间的能量转移,这可能会破坏能量耦合和/或导致辐照不均匀性 [2, 3]。为了解释这种跨光束能量转移 (CBET),在用于模拟 ICF 实验的流体动力学代码中实现了线性模型 [4, 5]。预测这种能量转移的能力对于所有激光驱动 ICF 概念的成功都至关重要。光束之间的功率传输对等离子体条件很敏感。图 1(a) 突出显示了 CBET 对离子温度的敏感性,强调了准确的模型在确定等离子体条件以预测其对内爆的影响方面的重要性。等离子体条件的不确定性导致在建模和实验可观测量之间隔离误差的挑战 [6],这使人们很难理解线性 CBET 理论的局限性 [7]。粒子内模拟表明,当离子声波被驱动到大振幅时,非线性效应将改变能量传递,导致偏离线性 CBET 理论 [8, 9]。早期的实验似乎证实了这一情况,表明需要非线性物理来模拟相互作用,但这些实验主要依靠流体动力学建模来确定等离子体条件 [10, 11],而由于等离子体条件的不确定性,对饱和物理的理解难以捉摸。迄今为止最完整的研究使用电子等离子体波的汤姆逊散射来测量电子温度和密度,同时测量能量传递 [12, 13]。在较小的离子声波振幅(δn/ne < 1%)下,这些实验可以通过线性 CBET 理论很好地建模,但对于较大的离子声波
摘要“起源”太空望远镜(Origins)是美国国家航空航天局(NASA)为准备美国2020年天文学和天体物理学十年调查而选定的四个科学和技术定义研究之一。起源将追溯人类起源的历史,从尘埃和重元素永久改变宇宙景观到现在的生活。它旨在回答三个主要的科学问题:星系如何形成恒星、形成金属以及如何通过再电离生长其中心的超大质量黑洞?在行星形成过程中,宜居性条件是如何发展的?围绕 M 矮星运行的行星是否支持生命?起源在中远红外波长下运行,波长范围从 ~ 2.8 μ m 到 588 μ m,由于其冷(~ 4.5 K)孔径和最先进的仪器,其灵敏度比之前的远红外任务高 1000 倍以上。
概览我们是激光雷达及感知解决方案市场的全球领导者。通过整合硬件和软件,我们与市场上大多数仅专注于硬件的激光雷达公司有所差异。激光雷达与视觉或其他传感器相结合形成感知解决方案,使汽车和机器人具备感知能力。我们基于芯片驱动的激光雷达硬件和人工智能感知软件开发解决方案,拓展应用场景并实现行业规模商业化。我们的业务主要包括(i)销售用于ADAS、机器人及其他非汽车行业(如清洁、物流、工业、公共服务和检查等)的激光雷达硬件产品,(ii)销售集成我们的激光雷达硬件和人工智能感知软件的激光雷达感知解决方案,以及(iii)提供技术开发及其他服务。
聚类是算法中的一个重要主题,在机器学习、计算机视觉、统计学和其他几个研究学科中有着广泛的应用。图聚类的传统目标是找到具有低电导性的聚类。这些目标不仅适用于无向图,而且无法考虑聚类之间的关系,而这对于许多应用来说可能是至关重要的。为了克服这些缺点,我们研究了有向图(有向图),其聚类彼此之间展示了更多的“结构”信息。基于有向图的 Hermitian 矩阵表示,我们提出了一种近线性时间的有向图聚类算法,并进一步表明我们提出的算法可以在合理的假设下以亚线性时间实现。我们的理论工作的意义通过对联合国商品贸易统计数据集的大量实验结果得到证明:我们算法的输出聚类不仅展示了聚类(国家集合)在进出口记录方面如何相互关联,还展示了这些聚类如何随着时间的推移而演变,这与已知的国际贸易事实一致。
识别高能粒子碰撞中形成的喷流需要解决可能大量终态粒子的优化问题。在这项工作中,我们考虑使用量子计算机加速喷流聚类算法的可能性。专注于电子-正电子碰撞的情况,我们考虑一种众所周知的事件形状,称为推力,其最优值对应于一组粒子中最像喷流的分离平面,从而定义两个半球喷流。我们展示了如何将推力公式化为量子退火问题和 Grover 搜索问题。我们分析的一个关键部分是考虑将经典数据与量子算法接口的现实模型。通过顺序计算模型,我们展示了如何将众所周知的 O × N 3 Þ 经典算法加速为 O × N 2 Þ 量子算法,包括从 N 个终态粒子加载经典数据的 O × N Þ 开销。在此过程中,我们还找到了一种将经典算法加速到 O = N 2 log N Þ 的方法,该方法使用受 SISC 单喷射算法启发的排序策略,该算法没有自然的量子对应物。借助并行计算模型,我们在经典和量子情况下都实现了 O = N log N Þ 的缩放。最后,我们考虑将这些量子方法推广到与大型强子对撞机质子-质子碰撞中使用的算法更密切相关的其他喷射算法。
摘要。由于存在提供原始特性的阳离子簇,因此在随机网络模型中无法在随机网络模型中描述阳离子的结构行为。甚至观察到可能以百分比浓度出现的阳离子观察到这些凝结过程,这使其更加壮观。尤其是,在(铝制)硅酸盐玻璃中ZR 4 + - 和Fe 2 + /Fe 3 +的结构和化学特性说明了阳离子周围的短距离顺序与纳米级异质性的形成之间的联系。这些Zr-或Fe富集的簇的结构特性相似,因为两者都是基于边缘共享阳离子多面体。阳离子也可能在网络形成位置中发生。在这种情况下,阳离子位点与硅酸盐网络连接。在这种定位中,保林规则和局部费用余额要求将有利于阳离子在纳米级稀释。对于前者而言,这两种类型的局部结构的拓扑约束比后者更强,因为与拐角共享的polyhedra相比,疾病的e ff ects较小。这可以解释这种有序异质性的生长过程中的晶体成核,从而产生了原始特性,这些特性在大量玻璃材料中所示,其中包含高科技玻璃陶瓷和火山眼镜。
左插图)。在高分辨率TEM图像中(图1b),由于pH-PEI锚定在纳米颗粒的表面上,芯和壳表现出明显的衬里差异。电子衍射图像(图1b)和晶格间距(图1c)与CEO 2晶体结构的(111),(200),(220)和(311)晶体平面相匹配。[29,30] Bare CEO 2和CEO 2的XRD模式 @PH-PEI显示了八个衍射峰,与CEO 2的特征结构相对应(PDF#00-004-0593)(图。1d),而CEO 2的衍射峰 @pH-PEI更加清晰,更窄,
抽象的维生素B 12被归类为亲水性维生素之一,在致命生理学以及血红蛋白的形成和功能中起着至关重要的作用。它还促进了抗炎作用,并减轻了病毒感染的风险。本文通过在玻璃碳电极(PMB/ZnO NPS/GCE)上使用甲基蓝色和氧化锌纳米颗粒设计传感器,建立了一种电分析方法来量化市售补充剂中维生素B 12的方法。使用CO(II/I)氧化还原对通过差分脉冲伏安法检测,对维生素B 12检测具有高灵敏度。传感器的形态和厚度,以及支撑电解质的pH值也是如此。要了解影响共同种种,还进行了一项干扰研究。在优化条件下,CO(II/I)对以-0.8 V与AG/AGCL的氧化还原峰值电流,线性关系IP = 0.0673x + 0.3449,r = 0.9942,显示维生素B 12浓度的线性定量范围为0.099-69.51μm。检测极限为0.0104 µm。可重复性,灵敏度和稳定性。开发的PMB/ZnO NPS/GCE电极成功地用于确定市售补充剂中的维生素B 12。所获得的回收率在注射范围内为97.1-104%,片剂为95.9-103.3%。本文获得的结果与当前标准定量通过UV -VIS光谱法的结果进行了比较。关键字:电化学传感器,玻璃碳电极,确定VB12,聚甲基蓝,氧化锌纳米颗粒