空气中发现的空气动力学直径不同的颗粒由于对人类健康的影响而成为优先污染物。1大气颗粒物的很大一部分是生物素,2-4,由生物学来源的颗粒组成,包括细菌,真菌,古细菌,病毒,花粉,其碎片,成分和副产物,例如DNA,内毒素,内毒素和霉菌毒素。监测生物杂质对于评估空气质量,尤其是关于公共卫生,环境生态学和与大气化学有关的方面至关重要的。因为在典型的室内和室外环境中的生物溶质浓度相对较低或经历了强烈的时间波动,因此没有生物素溶胶采样器可以使用单个分析工具来确定它们中存在的微生物的特定特征,因此存在强大的相互依存性,因此在研究中存在循环依赖性的工具,并研究了工具技术和工具技术和工具技术。5,6
经验证,该绝缘材料的属性符合 ICC 700-2008 第 703.2.1.1.1(c) 节中作为不透气绝缘材料的规定。请注意,这些领域的合规性决定权在于本报告的用户。用户将被告知特定于项目的规定可能取决于是否满足特定条件,而这些条件的验证超出了本报告的范围。这些规范或标准通常会提供补充信息作为指导。3.2 表面燃烧特性:UTC 7040-0.5 和 7041-0.5 ICC 绝缘材料的最大厚度为 5.8 英寸(147 毫米),标称密度为 0.5 磅/立方英尺(8 千克/立方米),按照 ASTM E84(UL 723)进行测试时,火焰蔓延指数为 25 或更低,烟雾发展指数为 450 或更低。如果安装过程与建筑物内部之间通过规范规定的 15 分钟热障隔开,则没有厚度限制。3.3 热阻:UTC 7040-0.5 和 7041-0.5 ICC 绝缘材料在平均温度为 75°F (24°C) 时的热阻 R 值如表 1 所示。3.4 透气性:根据 2015 和 2012 IRC 第 R806.5 节(2009 IRC 第 R806.4 节)和 2015 IBC 第 1203.3 节,根据 ASTM E283 进行的测试,UTC 7040-0.5 和 7041-0.5 ICC 绝缘材料厚度至少为 3.5 英寸(89 毫米),被视为不透气的绝缘材料。 3.5 UTC 7030-FS1 膨胀型涂料:UTC 7030-FS1 膨胀型涂料由 Urethane Technology Company, Inc. 生产,是一种水基单组分涂料,以 5 加仑(19L)桶和 55 加仑(208L)圆桶包装。如果将涂料存放在工厂密封的容器中,温度在 60°F (15.6°C) 和 80°F (26.7°C) 之间,则该涂料的保质期为 12 个月。3.6 DC 315 涂料:DC 315 涂料由 International Fireproof Technology Inc./Paint to Protect Inc. (ESR-3702) 生产,是一种单组分水基液体应用膨胀型涂料。涂料以 5 加仑(19 L)桶和 55 加仑(208 L)桶装供应,在 50°F(10°C)至 80°F(27°C)温度下储存在工厂密封的容器中时,保质期为 24 个月。4.0 安装
路博润先进材料有限公司 (“路博润”) 希望您发现所提供的信息有用,但请注意,本材料(包括任何原型配方)仅供参考,您应自行负责评估信息的适当使用。在适用法律允许的最大范围内,路博润不作任何陈述、保证或保证(无论是明示、暗示、法定或其他形式),包括任何关于适销性或特定用途适用性的暗示保证,或关于任何信息的完整性、准确性或及时性的暗示保证。路博润不保证本文提及的材料与其他物质结合、在任何方法、条件或工艺、任何设备或在非实验室环境中的性能。在将含有这些材料的任何产品投入商业化之前,您应彻底测试该产品(包括产品的包装方式),以确定其性能、功效和安全性。您应对您生产的任何产品的性能、功效和安全性负全部责任。路博润不承担任何责任,您应承担使用或处理任何材料的所有风险和责任。并非所有司法管辖区都批准任何索赔。任何提出与这些产品相关的索赔的实体都有责任遵守当地法律法规。本文所含内容不得视为未经专利所有者许可而实施任何专利发明的许可、建议或诱导,您应自行负责确定是否存在与所提供信息相关的任何组件或组件组合的专利侵权问题。您承认并同意,您自行承担使用本文提供的信息的风险。如果您对路博润提供的信息不满意,您的唯一补救措施是不使用这些信息。
一系列超分子聚氨酯(SPU)的设计并与协同的多功能氢键脂肪胺酰胺末端胶囊合成并合成。聚合物中的尿电烷,尿素和酰胺基序之间的氢键在固态的聚合物链之间具有强大的动态关联。聚氨酯的极性和极性成分的相分离也有助于增强其热和机械性能。与其他材料相比,具有双胺末端盖的超分子聚氨酯通过多种氢键通过多种氢键伴侣伴侣,并且表现出增强的拉伸和热性能。可变温度的红外光谱(VT-IR)和原子力显微镜(AFM)进行研究以研究聚合物的相形态,并揭示了相位分离的增加与最终囊泡中酰胺基序的引入之间存在相关性。这些SPU还具有出色的愈合能力,需要温度> 200℃才能恢复其物理特性。
摘要:为了应对从化石燃料衍生的常规聚氨酯粘合剂的环境影响,这项研究引入了一种可持续的替代方法,该替代方法是利用基于木质蛋白的多元醇通过米稻草通过InEscop开发的过程进行的。本研究探讨了传统多元醇的部分取代,基于木质素的等效物在合成鞋类工业的反应性热融化聚氨酯粘合剂(HMPUR)中。通过热重分析(TGA),差异扫描量热法(DSC),流变学分析和T-PEEL测试对这些环保粘合剂的性能进行了严格评估,以确保它们符合相关的行业标准。初步结果表明,基于木质素的多元醇可以有效地取代大部分化石衍生的多元醇,维持必不可少的粘合剂特性,并标志着朝着更可持续的粘合剂溶液迈出的重要一步。这项研究不仅强调了木质素在可持续粘合剂生产领域的影响,而且还强调了农业副产品的价值,因此与聚合物行业的绿色化学和可持续性目标的原则保持一致。
学生,Jayshree Periwal国际学校,印度拉贾斯坦邦,摘要本文对聚氨酯(PU)(PU)的当前技术和应用进行了详尽的回顾,这些技术涵盖了从衣服到工业和基础设施领域的广泛范围。pu以其多功能性和有利的材料特性而闻名,由于其出色的热和声学特性,已成为各个行业的关键参与者。重点是探索其多面应用程序,该评论深入研究了PU在时尚,制造和建筑等各个部门的利用中。具体来说,它突出了PU的显着热绝缘特性,这使得在节能服装和建筑材料中必不可少。此外,PU的声学特性有助于其在隔音和降低降噪应用中的广泛使用。通过综合最新的创新进步和潜在的创新途径,本文强调了PU在塑造现代技术中的重要作用,并强调了其在众多部门未来发展的巨大潜力。关键字:聚氨酯应用,基础设施,汽车行业简介聚氨酯聚氨酯的化学是由二/聚异生酯,二醇或多元醇的反应形成的,在存在链扩展器和其他添加剂的情况下形成重复氨基烷基链接。聚氨酯的基本成分是多元醇和异氰酸酯,这对于确定产物的最终特性至关重要。这些柔软而坚硬的细分市场。多元醇被广泛分类为多酚多醇和聚酯多元醇。改变多元醇或异氰酸酯可以显着改变聚氨酯的特性,从而使这些成分的结构 - 乳化关系对于理解和设计聚氨酯产物必不可少。在形成的聚氨酯中,多元醇和异氰酸酯会产生不同的域或区域,这些域或区域赋予了最终产物柔软,柔性或硬度等特性。多元醇通常具有较长的链长,从而导致更大的迁移率,从而为聚氨酯提供了柔韧性。链长较长的二醇具有更大的灵活性。异氰酸酯通常是非常短的链分子,它会导致更高的结晶,并导致紧凑,密集的填充片段非常坚硬且不柔滑。这种硬和软段的组合使聚氨酯具有特征性的多功能性,使其对广泛的应用非常有效。[2]多元醇是包含多个功能性羟基的物质。它们还可能包括酯,以太,酰胺,丙烯酸,金属,金属和其他官能团。聚醚多元醇是由环氧和含活性氢化合物之间的反应产生的。它们是通过添加氧化乙烷或
垃圾屏幕是由均匀间隔的杆或网格制成的结构,安装在涵洞或排水系统的入口处,以防止碎屑造成可能进一步下游并损坏关键资产(例如,泵站或管道)的堵塞(Benn等人。2019)。条间距通常设计为仅捕获可能造成损坏的碎片。如图1所示,一旦碎屑开始在多个条上桥接,然后开始逐步积累,阻塞水路并可能引起浮动事件(Blanc 2013; Benn等2019)。因此,清除被阻塞的垃圾屏幕是最重要的,尤其是在大雨的发作之前(Speight等人。2021)。实际上,这意味着地方当局需要制定更好的策略来清除这些资产。当前,这些垃圾屏幕是通过手动检查摄像机或常规时间表来维护的,但是在需要清除特定垃圾屏幕的情况下,这可能证明不具备。此外,虽然垃圾屏幕的阻塞可能会严重恶化流量事件(Streftaris et al。2013),据我们所知,这些信息从未被整合到投入预测系统。使用观察到的或建模的河流排放来为图中的排放提供信息(例如Hooker等人,2023)。因此,知道垃圾屏幕的位置和状态可以被认为是自动选择此类洪水淹没图的有价值信息。例如,模拟库可以包含根据不同垃圾屏幕阻塞方案计算的地图,并且根据垃圾屏幕状态的知识选择了正确的映射。
摘要。如今,由于其在机械和热性能方面的许多优势,聚氨酯(PU)泡沫在许多应用中成功替换了各种工程材料。在各种应用中,必须根据用户要求将PU FOAM形成各种三维模型,通过使用CAM软件和CNC铣削加工来制造产品。因此,根据材料和切割工具的性质和特征,在铣削加工过程中选择切割参数是必不可少的,并且显着影响了产生的PU泡沫产品的几何结构和表面粗糙度。根据对本文的审查,必须适当考虑几个加工参数,包括主轴旋转速度,切割深度,切割工具选择和进料速度。振动将随着主轴旋转速度的增加而增加,这带来了切割工具,但会带来更好的表面质量。可以通过选择适当的切割深度并产生低表面粗糙度值来实现连续的芯片形成。选择与材料特征相匹配的合适切割工具和几何形状可以减少加工过程中物质损害的风险,从而降低表面粗糙度值。最后,较低的切割率将使表面粗糙度最小化,但会增加尖端磨损的风险。
摘要本研究研究了用多壁碳纳米管(MWCNT)加强热塑性聚氨酯(TPU)复合材料的机械性能,以在运动保护齿轮中应用。目标是(1)系统地评估MWCNT载荷水平和对齐对拉伸,压缩,硬度和影响特性的影响; (2)确定用于平衡增强的最佳MWCNT含量范围; (3)探索可扩展的制造方法。MWCNT/TPU复合材料具有0.5-4 wt%的负载,通过溶液混合和压缩成型预先折扣。机械测试显示出显着改善,有62 MPa拉伸强度(+19%),507 MPa模量(+23%)和1-4 wt%MWCNT的撞击能量吸收增加10%。MWCNT对齐进一步增强了性能,而高于2 wt%的负载显示一些封闭。微结构表征证明了良好的MWCNT分散和界面键合。结果表明,低MWCNT添加可以大大提高TPU的强度,刚度和撞击性。这表明开发了具有改善能量吸收和硬脑膜功能的头盔和垫子(例如头盔和垫子)的高级,轻巧的运动保护设备的巨大潜力。未来的工作将着重于针对特定齿轮应用的复合处理和设计。