卷。13(2021)(/2073-4360/13)卷。12(2020)(/2073-4360/12)卷。11(2019)(/2073-4360/11)卷。10(2018)(/2073-4360/10)卷。9(2017)(/2073-4360/9)卷。8(2016)(/2073-4360/8)卷。 7(2015)(/2073-4360/7)8(2016)(/2073-4360/8)卷。7(2015)(/2073-4360/7)
基于蛋白质的微纤维在生物工程和食品领域具有潜在的应用,但在微米级上保留和利用其蛋白质构件的独特纳米机械性能仍然是一项挑战。本研究通过同轴微流体纺丝果胶和 β-乳球蛋白在不同构象状态(单体、淀粉样蛋白原纤维、缩短的淀粉样蛋白原纤维,处于各向同性/向列相)下自下而上制造核壳纤维,在 CaCl 2 溶液中凝胶化。纤维直径范围为 478 至 855 μ m(湿态)和 107 – 135 μ m(干态)。它们显示出清晰的核壳横截面,但果胶-β-乳球蛋白单体纤维除外,据推测紧凑的蛋白质会扩散到果胶基质中。纤维构建块的分子取向表示为有序参数,代表果胶链和淀粉样蛋白原纤维平行于纤维轴的排列,该参数通过空间分辨率为 20 μ m 的同步加速器广角 X 射线散射 (WAXS) 计算得出。与纯果胶纤维相比,引入淀粉样蛋白原纤维作为蛋白质核心可使杨氏模量从 3.3 增加到 6.4 GPa,拉伸强度从 117 增加到 182 MPa。然而,将蛋白质核心流速从 1 mL/h 增加到 2 mL/h 会导致核心喷射螺旋弯曲、有序性降低,最终导致机械性能恶化。总体而言,与缩短的淀粉样蛋白原纤维相比,全长淀粉样蛋白原纤维对机械性能更有益。通过深入了解蛋白质构象、纺丝流速和由此产生的核壳微纤维的机械性能之间的关系,这些结果可能有助于新型纤维蛋白质材料领域。
b“蛋白质折叠是一个细微的过程,由原代氨基酸序列和细胞蛋白质质量控制机制编码并取决于错误折叠的蛋白质可以汇总成有毒的寡聚物或淀粉样蛋白原纤维,并与包括阿尔茨海默氏症和帕金森氏病以及II型糖尿病在内的疾病有关。这些淀粉样蛋白沉积物具有共同的跨结构,无论其主要氨基酸序列如何。最近的研究表明,生物分子冷凝物的形成是某些淀粉样蛋白蛋白质固有的另一种共同点。冷凝物的新兴生物物理特性可以调节蛋白质聚集;因此,了解淀粉样蛋白形成的结构和动力学基础以及蛋白质质量控制机制对于理解蛋白质错误折叠疾病和治疗剂的下游发展至关重要。本期特刊需要进行多样化和全面的概述,这些概述说明了来自生物物理,生化或细胞生物学观点的蛋白质错误折叠和神经退行性疾病。”
本演讲包含1995年《私人证券诉讼改革法》的含义中的前瞻性陈述。本演讲中包含的所有陈述,除了与当前事实或当前情况有关的历史事实或陈述的陈述以外,包括但不限于包括Zervimesine在内的产品候选者,也称为Zervimesine,以及任何预期或隐含的收益或结果,包括我们对Zervimesine的最初临床结果以及我们在包括我们的临床范围内的临床范围,包括我们的临床范围,包括我们的临床范围,包括我们的临床范围,我们的临床计划,包括我们的临床范围,包括我们的临床范围,包括我们的临床临床范围,监管计划,对潜在患者人群的期望,对我们的专利组合的期望以及我们预期的现金跑道是前瞻性的陈述。这些陈述,包括与我们临床试验的时间和预期结果有关的陈述,涉及已知和未知的风险,不确定性和其他重要因素,这些因素可能导致我们的实际结果,绩效或成就与前瞻性陈述所表达的任何未来结果,表现或成就具有实质性不同。在某些情况下,您可以通过诸如“可能”,“可能”,“意志”,“应该”,“期望”,“计划”,“目标”,“ seek”,“预期”,“预期”,“目标”,“目标”,“目标”,“目标”,“项目”,“相信”,“相信”,“估计”,“估计”,“否定”,“或其他类似”,“”或“否定”,“”或“ torys”,“”或“否定”,这些风险并不详尽,我们面临已知和未知风险。您不应依靠这些前瞻性陈述作为未来事件的预测。我们将这些前瞻性陈述基于我们当前关于未来事件和财务趋势的预期和预测,我们认为我们可能会影响我们的业务,财务状况和经营业绩。这些前瞻性陈述仅在本演讲之日起说明,并且受到许多风险,不确定性和假设的约束,其中一些无法预测或量化,其中一些超出了我们的控制。可能无法实现或发生在我们前瞻性陈述中所反映的事件和情况,实际结果可能与前瞻性陈述中预测的结果有实质性的差异。此外,我们在动态的行业和经济中运作。新的风险因素和不确定性可能会不时出现,管理层无法预测我们可能面临的所有风险因素和不确定性。除了适用法律要求外,我们不打算公开更新或修改本文中包含的任何前瞻性陈述,无论是由于任何新信息,未来事件,无法正常改变情况。可能导致实际结果与当前期望有重大差异的因素包括但不限于以下因素:我们通过开发活动,临床前研究和临床试验以及与此相关的成本成功推动我们当前和未来的产品候选者的能力;初步数据,临床前研究和较早临床试验结果固有的不确定性可预测早期或晚期临床试验的结果;监管申请和批准的时机,范围和可能性,包括我们候选产品的监管部门批准;竞争,我们确保新(并保留现有)赠款资金的能力,我们的增长和管理增长,维持与供应商的关系并保留我们的管理和关键员工的能力;适用法律或法规的变化;我们可能会受到其他经济,商业或竞争因素的不利影响,包括持续的经济不确定性的可能性;我们对支出和盈利能力的估计;我们竞争的市场的发展;我们实施战略计划并继续创新现有产品的能力;我们捍卫知识产权的能力;持续的全球和地区冲突的影响; COVID-19大流行对我们的业务,供应链和劳动力的影响;以及在www.sec.gov上向美国证券交易委员会提交的年度和季度报告的“风险因素和季度报告的“风险因素”部分中,更全面描述了风险和不确定性。
强烈的电鱼连续将代谢能量转化为离子选择性膜的电势差。1,2具有此能力的可植入人造电器器官的制造将需要宏观,稳定,自我修复,流体和能量转化的膜。这里提出的工作引入了一种自组装策略,以准备满足所有这些标准的人造膜。该策略使用水性两相系统的界面来模板并稳定具有可扩展区域的分子薄(〜35 nm)平面块聚合物双层双层分子的形成,这些双层均可能超过10平方米,而没有缺陷。这些膜具有自我修复的能力及其屏障功能,以与离子(〜1mcm2)相匹配磷脂膜的能力。这些膜的流动性可以通过分子载体来直接功能化,该分子载体将钾离子沿浓度梯度沿钠离子降低了浓度梯度。与技术膜的电荷选择性相反,这种生物启发的离子 - 选择性使得在膜上建立电势差,以将等效浓度的NaCl和KCl分离溶液。我们通过与互连的流体储层构造台式原型人造器官来证明适用性,其电压增加了60 mV,每增加一个离子选择性膜串联。
图1。(a)根据块的体积分数(f a),可从微观相期望的定义形态的示意图。(b)AB二嵌段共聚物预期的理论相图取决于F a和χn。(c)实验获得的PS -B -PI二嵌段共聚物的相图。从F. S. Bates,G。H。Fredrickson复制;块共聚物 - 设计器软材料。物理学今天1999年,第52(2)卷,第32-38页,在美国物理研究所的许可下。9虽然SEM和AFM技术已被经典地用于获取一些有趣的信息
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
Cian Cummins,Alberto Alvarez-Fernandez,Ahmed Bentaleb,Georges Hadziioannou,Virginie Pon-Sinet等。Langmuir,2020,36(46),pp.13872-13880。10.1021/acs.langmuir.0c02261。hal-03033202
完整作者列表:Kuschlan,Stefano; CNR 微电子与微系统研究所 Chiarcos,Riccardo;东皮埃蒙特大学阿梅代奥阿伏伽德罗 - 亚历山德里亚校区,DISIT Laus,Michele;东皮埃蒙特大学,DISIT Perez-Murano,Francesc;巴塞罗那微电子研究所 Llobet,Jordi; IMB CNM 费尔南德斯-雷古莱兹,玛尔塔;巴塞罗那微电子研究所,纳米制造 Bonafos,Caroline; CEMES Perego,米歇尔; CNR,微电子与微系统研究所 Seguini,Gabriele; CNR、IMM、玛瑙布里安扎德米奇利斯单位、马可; CNR 微电子与微系统研究所 Tallarida,Graziella;国家研究委员会微电子与微系统研究所,Agrate Brianza 单位
Bharath Dyaga,Antoine Lemaire,Shubhradip Guchait,Huiyan Zeng,Bruno Schmaltz等。掺杂剂位置在交替的供体供体 - Acceptor拷贝剂的半晶结构中的影响对极性交换P极性交换P→N机械。材料杂志化学杂志C,2023,11(47),第16554-16562页。10.1039/D3TC02416D。 hal-0460287210.1039/D3TC02416D。hal-04602872
