用于撤离替换技术的指示:1。将培养皿放在架子上,然后将厌氧指示条插入板架上的较小夹子中。2。将加载的机架放入聚碳酸酯罐中。3。确保正确将硅'o'环正确放在罐子上后,将装有附件的盖子放在罐子上。施加三个指夹,然后拧紧直至紧紧。4。必须将称为真空Chuck的金属配件用于疏散/替换技术,以使第一个真空降低。5。安装真空盘连接到真空线上的真空盘,以标记为“真空”并按下(不要螺钉)的阀。拧紧会损坏密封橡胶垫圈并导致Chuck泄漏。6。将系统撤离到HG中约30。7。使用后,只需立即将真空卡盘从真空阀上抬起即可断开连接。观察压力表。在此阶段将检测到罐子中的泄漏,因为真空读数不会保持恒定。8。将连接到气体供应的压力连接到罐子的压力阀上。将气体混合物运到罐子中,直到压力为零。断开压力袋。9。孵化罐子。10。孵育后,指示条应用正常的实验室废物丢弃。
熔融沉积成型 (FDM),也称为熔融长丝制造 (FFF),是增材制造领域最成熟的技术之一,由于使用和维护成本低 [1],在低熔点聚合物中广受欢迎。进料材料以长丝形式通过加热喷嘴进料,并逐层沉积在表面上。商用热塑性塑料如丙烯腈丁二烯苯乙烯 (ABS)、聚碳酸酯 (PC)、尼龙、聚乳酸 (PLA) 及其组合经常用于生产 FDM 部件 [2]。虽然可以实现高度复杂的几何形状,但这会引发相对于块体材料的三种主要强度降低机制 [3]:(i) 由于空隙导致横截面积减小。仅此一项就已证明对抗拉强度有巨大影响 [4]。(ii) 空隙引起的应力集中。基于这一观察,Xu 和 Leguillon [5] 提出了双缺口空隙模型来解释 3D 打印聚合物的各向异性拉伸强度。(iii)聚合物链的不完全相互扩散。与几何方面无关,这会降低材料本身在细丝边界处的强度 [1] 。这三种现象由大量工艺参数控制,这些参数的强大影响和复杂相互作用超出了我们目前的知识范围,是一个活跃的研究领域。Cuan-Urquizo 等人 [6] 确定了两大类参数,即制造参数(例如喷嘴温度和打印速度)以及结构参数,
● 每个接待员的桌子上都会安装聚碳酸酯屏障 ● 地板上会划出 6 英尺的社交距离 ● 学生椅子之间将保持 6 英尺的距离以保持社交距离 ● 每个房间的单元通风机在运行时都会吸入新鲜空气 ● 两个校区每 100 名学生至少配备一个饮水机 ● 休息室一次最多允许 3 人,并且他们必须保持社交距离 ● 将进行消防演习,以便每个人都保持足够远的社交距离 ● 浴室将全天清洁多次。每天都会保存一份日志来显示谁清洁了它。 ● 自助餐厅同时在场的学生人数会减少。这些学生将相隔 6 英尺就座。 ● 管理员将接受清洁和消毒的进修课程。还将提供定期审查和新产品更新。 ● 学生将被教导在走廊上行走时右肩靠墙,这样我们在与他人擦肩而过时就能保持社交距离 ● 我们的酒精洗手液分配器是根据 FCNYS 2020 第 5705.5 节安装的 ● 铅水测试将于今年(2020-21 年)进行 ● 我们的 2020 年建筑状况调查将安排在 1 月 1 日之前进行。 ● 我们所做的任何更改或添加都将符合 2020 年纽约州统一防火和建筑规范
在过去的 30 年里,增材制造 (AM) 或 3D 打印已成为许多工业和实践相关材料的著名制造技术。1–9 与传统的减材制造 (SM) 不同,AM 迅速普及,因为它能够从许多不同的起始材料创建更复杂的几何形状。10 立体光刻 (SLA)、选择性激光烧结 (SLS)、数字光处理 (DLP) 和熔融沉积成型 (FDM) 是一些广泛使用的 AM 技术。在这些方法中,FDM 可能是材料工程师和业余爱好者最常用的方法。FDM 涉及将熔融的长丝通过加热的喷嘴挤出到构建板上以形成部件,然后逐层构建直到完成最终的打印产品。虽然 FDM 是一种易于理解和采用的技术,但其主要缺陷在于成品打印件具有明显的各向异性。尽管这种特性的不均匀性通常会导致部件之间和部件之间的巨大差异,11 但仍然有许多商品聚合物长丝,包括丙烯腈丁二烯苯乙烯 (ABS)、聚乳酸 (PLA)、聚酰胺(例如尼龙)、聚碳酸酯 (PC)、热塑性聚氨酯 (TPU) 和聚对苯二甲酸乙二醇酯 (PET) 及其共聚物,都可以通过 FDM 以良好的尺寸保真度进行打印。
为了了解聚碳酸酯 (PC) 和磁控溅射金属氮化物薄膜之间的界面键形成,通过从头算模拟和 X 射线光电子能谱对 PC | X 界面 (X = AlN、TiN、(Ti,Al)N) 进行了比较研究。模拟预测界面处会出现显著差异,因为 N 和 Ti 与聚合物的所有功能团形成键,而 Al 仅与原始 PC 的碳酸酯基团选择性反应。与模拟结果一致,实验数据表明 PC | AlN 和 PC | (Ti,Al)N 界面主要由界面 C ─ N 键定义,而对于 PC | TiN,界面形成还以大量 C ─ Ti 和 (C ─ O) ─ Ti 键为特征。结合键强度计算和测得的界面键密度表明,PC | (Ti,Al)N 界面最强,其次是 PC | AlN,而预测最弱的是 PC | TiN 的强界面 C─N 键密度较低。本研究表明,所采用的计算策略能够预测 PC 和金属氮化物之间的界面键形成,并且可以合理地假设本文提出的研究策略可以很容易地适应其他有机|无机界面。
10.3仪表应符合保护程度IP 51的程度,以防止灰尘,水分和害虫的吸收。10.4仪表应提供透明的扩展端子盖(ETBC)。扩展的端子盖应具有顶部/侧铰链排列,以使其始终保持与仪表的关联。10.5仪表外壳,端子块和ETBC应由牢不可破的,高级,耐火,不易燃料,聚碳酸酯或同等高级和优质的工程塑料制成。端子块应具有终端孔,应具有足够尺寸的最小8.0毫米(直径)以容纳导体,按照第13779- 1999年的IS:6.2和6.4的要求满足要求。10.6将导体固定到端子块的方式应确保足够耐用的接触,以免松动或过热的风险。螺钉连接传输接触力和螺钉固定,在仪表寿命期间可能会松动和拧紧几次,以至于使与任何其他金属零件接触而产生的腐蚀风险被最小化。电连接应如此设计,以至于接触压力不是通过绝缘材料传播的。端子和末端螺钉应由镀金的MS /镍镀铜制成,以提供更好的电导率。清除率和蠕变距离应符合IS 13779:1999的相关条款/CBIP技术报告编号325。
生产期间在温室中的热能需求对于确定生产经济学和可行性研究很重要。这是因为评估未来在温室部门的投资需要准确的能源需求和成本估算。为此,考虑到该地区的气象条件,植物的最佳温度需求以及温室的技术规格,计算了温室和供暖成本所需的热能。使用两种不同的覆盖材料来确定热能需求:聚乙烯侧壁和屋顶(PE)和聚碳酸酯侧壁 +聚乙烯屋顶(PC + PE)。此外,对8种不同的温室组合进行了计算,包括没有热筛和热筛网的这些温室的不同绝缘状态(较差,中等和良好的绝缘)。通过研究的结果,当使用PC覆盖材料而不是PE覆盖材料作为温室侧壁的覆盖材料时,消耗的能量量减少了4.5%。与PE和PC+PC+PE+PE+PE Greenhouses相比,如果使用了良好的隔热热屏幕,则用PE和PC+PE盖覆盖,如果使用了良好的隔热热屏幕,则消耗的能量量将分别降低23.1%-22.4%。可以通过低热传递系数覆盖材料和隔热良好的热屏幕节省的加热能量和燃料成本可以降低25.8%。该研究的结果将指导气候相似的地区的温室生产商,以确定消费的能源,温室设计,投资评估以及温室部门政策。
p 2.1使用聚合物固定的抗生物源膜的抗双源膜的制造和表征,使用聚合物J. kim - 韩国Kyungpook国立大学,韩国。118 p 2.2再生聚碳酸酯作为通过nips D. Breite制备膜制备的原始材料 - 莱布尼兹·伊斯蒂特·弗洛伊尔·奥伯夫弗罗夫·奥伯夫弗罗夫·乔chenmodi-fürfulächenmodi-fizierung(iom),德国。。。。。。。。。。。。。。。。。。119 p 2.3使用陶瓷膜触发器S. trepte-Fraunhofer Ikts,德国。。。。。。。。121 p 2.4交联对聚苯乙烯 - 二乙烯基苯基氯化物共聚物的性质的影响,基于燃料电池的Z.saraç-Gebze技术大学,化学工程,Türkiye。。。。。。。。。。。。。。。。。。。。。123 p 2.5季分化剂对多硫酮/mxene纳米复合物的离子构成性的影响。 Taşdelen-Yücedağ-吉布兹技术大学,化学工程,Türkiye。。。。。。。。。。。。。。125 p 2.6使用块共聚物D. Aydin -SelçukUniversity,Türkiye的受控多孔膜的形成和表征。。。。。。。。127 p 2.7将甲基蓝色染料转运到基于石墨烯的聚合物膜I. Gubbuk-SelçukUniversity,Türkiye。。。。。。。。。129
摘要:准确的剂量学验证在放射疗法中变得越来越重要。al-尽管聚合物凝胶剂量测定法可能有助于验证复杂的3D剂量分布,但由于其对氧气和其他污染物的反应性强,因此对临床应用有局限性。因此,重要的是,凝胶储存容器的材料将与外部污染物的反应阻止反应。在这项研究中,我们测试了可以用作凝胶容器的各种基于聚合物的3D打印材料的化学渗透性。使用甲基丙烯酸,明胶和四甲基(羟甲基)氯化磷。比较了可应用于融合沉积建模(FDM)-Type 3D打印机的五种类型的印刷材料:丙烯酸酯丁烷丁二烯苯乙烯(ABS),cPE-POLYETER(CPE),聚碳酸酯(PC)(PC),多聚乳酸(PLA)和聚丙烯(PPPPPPPPPP)(PP)(PLA)(PLA)(pp)(plage vial)。分析了从磁共振成像扫描获得的每种材料的R2(1/T2)松弛率的地图。此外,评估了R2图的响应直方图和剂量校准曲线。R2分布表明,CPE比其他材料具有更高的边界,并且CPE的轮廓梯度也最接近参考小瓶。直方图和剂量校准表明,与参考小瓶相比,CPE提供了83.5%的最均匀和最高相对响应,均方根误差为8.6%。这些结果表明CPE是FDM型3D打印凝胶容器的合理材料。
YCLIC烯烃共聚物(COC)包括一类重要特性的重要特性,例如软材料或硬材料,具体取决于最终共聚物组成中Norbornene Monober的含量。在普通的商业共聚物中,诺本烯的量超过20%(通过mol),该量被随机分布在共聚物的微观结构中,并使最终聚合物具有无定形和光学透明的结构。共聚物结构中悬齿含量的增加导致最终共聚物的玻璃过渡温度(T g)的相应升高。这种类型的COC的显着光学特性在很大程度上取决于它们的无定形结构,这不仅限于可见的光波长范围,因此COC可以用作紫外线和可视波长中的透明聚合物,以实现合适的光学透明产品。由于对化学物质尤其是极性溶剂的耐药性较高,因此使用COC与其他聚合物以竞争方式生产实验室设备。另一方面,COC是惰性的生物材料,使其成为适用于药物包装申请的候选者,包括预填充注射器。水是用于生产可注射产品的主要溶剂,因此这些共聚物的吸水率低可确保在环境条件下最终产物的尺寸稳定性。在高度潮湿的环境中,COC的吸水能力的限制为4和10倍,比聚碳酸酯和聚甲基丙烯酸甲酯聚合物的吸水能力分别限制为4和10倍。最后,提到了COC处理及其应用的详细信息。在这项研究中,在对COC进行了简要介绍之后,讨论了不同催化剂的聚合方法,并讨论了这些共聚物的光学,机械和热特性。