环氧玻璃二聚体代表了一类新的高性能可持续树脂,因为它们具有所需的机械和热延展性。不幸的是,由于机械鲁棒性,可回收性和R.T.的“冷冻”状态,现有的环氧玻璃二聚体无法在室温(R.T.)上进行自我修复(R.T.)。此处是通过固化双(2,3-环氧丙基)环氧基-4-烯1,2-二羧酸盐(DCNC),具有50 wt%的磷/硅/硅含量的聚乙基烯(ped-Ethylenemine in R.t ped),是一种高性能的超单血性环氧玻璃体玻璃体(DCNC/50PEDA)。将互补的动态非共价氢键和π-π堆积和共价β-羟基酯键集成到DCNC/50PEDA网络的高弹性分支单元中。此设计使玻璃二聚体具有室温的自愈合效率,高达96.0%,高机械强度达到36.0 mPa,并且所需的闭环回收能力。此外,它对各种底物的牢固粘附力和出色的火势粘贴,例如,有限的氧指数为39.0%,所需的UL-94 V-0等级使其成为适合火焰底物(例如木材)的出色的火涂层。这样的性能投资组合使DCNC/50PEDA的表现胜过现有的自我修复聚合物和玻璃二聚体。这项工作建立了一种有希望的互补动态设计协议,可通过整合动态的非共价互动和共价键来创建自我修复,强,可回收和火力安全的聚合物,这些键在工业中具有很棒的现实应用,例如散装材料,涂料,涂料和胶粘剂。
概览我们是激光雷达及感知解决方案市场的全球领导者。通过整合硬件和软件,我们与市场上大多数仅专注于硬件的激光雷达公司有所差异。激光雷达与视觉或其他传感器相结合形成感知解决方案,使汽车和机器人具备感知能力。我们基于芯片驱动的激光雷达硬件和人工智能感知软件开发解决方案,拓展应用场景并实现行业规模商业化。我们的业务主要包括(i)销售用于ADAS、机器人及其他非汽车行业(如清洁、物流、工业、公共服务和检查等)的激光雷达硬件产品,(ii)销售集成我们的激光雷达硬件和人工智能感知软件的激光雷达感知解决方案,以及(iii)提供技术开发及其他服务。
聚类是算法中的一个重要主题,在机器学习、计算机视觉、统计学和其他几个研究学科中有着广泛的应用。图聚类的传统目标是找到具有低电导性的聚类。这些目标不仅适用于无向图,而且无法考虑聚类之间的关系,而这对于许多应用来说可能是至关重要的。为了克服这些缺点,我们研究了有向图(有向图),其聚类彼此之间展示了更多的“结构”信息。基于有向图的 Hermitian 矩阵表示,我们提出了一种近线性时间的有向图聚类算法,并进一步表明我们提出的算法可以在合理的假设下以亚线性时间实现。我们的理论工作的意义通过对联合国商品贸易统计数据集的大量实验结果得到证明:我们算法的输出聚类不仅展示了聚类(国家集合)在进出口记录方面如何相互关联,还展示了这些聚类如何随着时间的推移而演变,这与已知的国际贸易事实一致。
识别高能粒子碰撞中形成的喷流需要解决可能大量终态粒子的优化问题。在这项工作中,我们考虑使用量子计算机加速喷流聚类算法的可能性。专注于电子-正电子碰撞的情况,我们考虑一种众所周知的事件形状,称为推力,其最优值对应于一组粒子中最像喷流的分离平面,从而定义两个半球喷流。我们展示了如何将推力公式化为量子退火问题和 Grover 搜索问题。我们分析的一个关键部分是考虑将经典数据与量子算法接口的现实模型。通过顺序计算模型,我们展示了如何将众所周知的 O × N 3 Þ 经典算法加速为 O × N 2 Þ 量子算法,包括从 N 个终态粒子加载经典数据的 O × N Þ 开销。在此过程中,我们还找到了一种将经典算法加速到 O = N 2 log N Þ 的方法,该方法使用受 SISC 单喷射算法启发的排序策略,该算法没有自然的量子对应物。借助并行计算模型,我们在经典和量子情况下都实现了 O = N log N Þ 的缩放。最后,我们考虑将这些量子方法推广到与大型强子对撞机质子-质子碰撞中使用的算法更密切相关的其他喷射算法。
摘要。由于存在提供原始特性的阳离子簇,因此在随机网络模型中无法在随机网络模型中描述阳离子的结构行为。甚至观察到可能以百分比浓度出现的阳离子观察到这些凝结过程,这使其更加壮观。尤其是,在(铝制)硅酸盐玻璃中ZR 4 + - 和Fe 2 + /Fe 3 +的结构和化学特性说明了阳离子周围的短距离顺序与纳米级异质性的形成之间的联系。这些Zr-或Fe富集的簇的结构特性相似,因为两者都是基于边缘共享阳离子多面体。阳离子也可能在网络形成位置中发生。在这种情况下,阳离子位点与硅酸盐网络连接。在这种定位中,保林规则和局部费用余额要求将有利于阳离子在纳米级稀释。对于前者而言,这两种类型的局部结构的拓扑约束比后者更强,因为与拐角共享的polyhedra相比,疾病的e ff ects较小。这可以解释这种有序异质性的生长过程中的晶体成核,从而产生了原始特性,这些特性在大量玻璃材料中所示,其中包含高科技玻璃陶瓷和火山眼镜。
左插图)。在高分辨率TEM图像中(图1b),由于pH-PEI锚定在纳米颗粒的表面上,芯和壳表现出明显的衬里差异。电子衍射图像(图1b)和晶格间距(图1c)与CEO 2晶体结构的(111),(200),(220)和(311)晶体平面相匹配。[29,30] Bare CEO 2和CEO 2的XRD模式 @PH-PEI显示了八个衍射峰,与CEO 2的特征结构相对应(PDF#00-004-0593)(图。1d),而CEO 2的衍射峰 @pH-PEI更加清晰,更窄,
抽象的维生素B 12被归类为亲水性维生素之一,在致命生理学以及血红蛋白的形成和功能中起着至关重要的作用。它还促进了抗炎作用,并减轻了病毒感染的风险。本文通过在玻璃碳电极(PMB/ZnO NPS/GCE)上使用甲基蓝色和氧化锌纳米颗粒设计传感器,建立了一种电分析方法来量化市售补充剂中维生素B 12的方法。使用CO(II/I)氧化还原对通过差分脉冲伏安法检测,对维生素B 12检测具有高灵敏度。传感器的形态和厚度,以及支撑电解质的pH值也是如此。要了解影响共同种种,还进行了一项干扰研究。在优化条件下,CO(II/I)对以-0.8 V与AG/AGCL的氧化还原峰值电流,线性关系IP = 0.0673x + 0.3449,r = 0.9942,显示维生素B 12浓度的线性定量范围为0.099-69.51μm。检测极限为0.0104 µm。可重复性,灵敏度和稳定性。开发的PMB/ZnO NPS/GCE电极成功地用于确定市售补充剂中的维生素B 12。所获得的回收率在注射范围内为97.1-104%,片剂为95.9-103.3%。本文获得的结果与当前标准定量通过UV -VIS光谱法的结果进行了比较。关键字:电化学传感器,玻璃碳电极,确定VB12,聚甲基蓝,氧化锌纳米颗粒
作者:R Blundell · 2024 — 通过结合石墨烯和硼烯,可以增强石墨的药物输送能力,从而实现更有效、更有针对性的治疗方法。
审查了15次第3期试验,1阶段试验和1个指南。根据诊断,比较器和包括病原体的临床试验而变化。cefiderocol与咪毕/西兰图蛋白相比,头孢菌素是对复杂的尿路感染(CUTI)的治疗,而在事后分析中是出色的。非效率是由比较器上的微生物消除改善(73%vs 56%)驱动的,尽管临床反应在数值上也更高(90%vs 87%)。该试验不包括抗性生物。在接受医院肺炎的治疗中,与高剂量的延长输注MeropeNem相比,在第14天,头孢菌素在全因死亡率中是非内部死亡率(12.4%vs 11.6%)。约有30%的分离株产生的ESBL,并且在Cefiderocol和MeropeNem之间相似。发现19%的患者具有抗碳青霉烯的生物体,除了在非常高的MeropeNem MICS(在Meropenem ARM中增加)外,死亡率没有显着差异,这表明Cefiderocol可能有助于治疗碳青霉烯类病原体,但该亚基限制为小数量。在评估患有严重碳青霉感染感染的患者的描述性试验中,与最佳可用疗法相比,患者具有相似的临床和微生物学功效,但是在研究结束时,全因死亡率较高,在Cefiderocol Arm中(34%vs 18%),主要由AcineTobacter Spp驱动。约有20%的病原体是头孢菌素抗性/ESBL阳性。对于医院肺炎,全因死亡率为28天,不属于标准剂量MeropeNem(9.6%vs 8.3%)。一起,这些试验表明,在治疗非耐药性尿液和肺部源感染方面,与碳青霉烯无端的头孢曲松相比,与治疗耐碳青霉烯抗性病原体相比,可能与较差的结果有关。头孢烷/avibactam用于治疗CUTI,头孢烷/Avibactam遇到非劣质性,与多甲基(70.2%vs 66.2%)相比,第5天症状的患者的百分比更高,而微生物消除的症状优势(70.2%vs 66.2%),而高高的百分比却高。ESBL和AMPC在30%的分离株中普遍存在,但在试验中排除了抗碳青霉烯的病原体。每种病原体的终点是相似的,通常在数值上有利于美洛培植物。与甲硝唑结合用于治疗复杂的腹腔内感染(CIAI)时,头孢济胺/avibactam在治疗测试时不受Meropenem的治疗(81.6%vs 85.1%)。这些试验表明,与碳纤维烯相比,在CUTI,医院肺炎和CIAI中治疗头孢心去的病原体相比,头孢烷/avibactam与碳纤维烯相比是非矿体。
JMC(原第一物产公司)成立于 1953 年,是糖精和含硫精细化学品领域的全球领导者。JMC 于 2004 年成为 KISCO 集团的一部分。JMC 是一家大型糖精制造商,糖精是一种安全的人工甜味剂,可以大幅降低糖含量。JMC 为世界上最大的以质量为导向的跨国食品和药品生产商提供糖精。JMC 使用 1879 年发现的传统 Remsen 和 Fahlberg 工艺生产糖精。JMC 是唯一一家在自己的生产线上生产所有高纯度糖精原材料(如 OTSA(邻甲苯磺酰胺))的公司。糖精生产过程中不使用任何有机溶剂,JMC 的完全垂直整合确保了最高纯度的材料,从而提供最高质量的糖精。JMC 的糖精符合食品安全标准 FSSC 22000。JMC 还生产精细化学品,用于荧光颜料、医药中间体、电子、塑料和农产品等应用。