近年来,由于其独特的特性以及在气体和生物传感器中的潜在应用,对磁石墨烯(MGO)的兴趣显着增加。在本评论文章中给出了MGO合成技术的广泛摘要,例如化学还原,水热合成和溶剂热合成。及其在气体和生物传感器中的许多用途,MGO的灵敏度,选择性和稳定性也被突出显示。除了可以鉴定氨,硫化氢和挥发性有机化合物的气体传感器外,MGO还可以用作鉴定蛋白质,葡萄糖,胆固醇和DNA的生物传感器。文章的结论讨论了该领域的未来方向以及在各个行业的MGO研究中的可能应用。
首席研究者已经对GO纳米片的基本物理特性和应用进行了研究。在GO纳米片和GO膜中的离子电导率中,我们发现离子电导率超过了Nafion的电导率。在还原形式的情况下,RGO,还通过还原方法成功控制了P型,N型和解体半导体特性的降低形式。此外,GO的氧官能团是负电荷的,杂种是通过与各种金属离子的静电相互作用形成的,并且发现以RGO杂种,金属氧化物和金属纳米颗粒的降低形式在RGO纳米片上支持。在GO和RGO纳米片的合成中,使用液体等离子体掺杂了各种原子,并且通过热液合成和Freeze-Drysing从GO和RGO纳米片形成的3D结构也成功。因此,着重于研究获得的材料中的钻石相变,我们首先合成了N-RGO的氮掺杂钻石。尽管结果是初步的,但我们观察到在纳米颗粒相中T C = 30 K的Meissner效应,而在大量相中,T C = 130 K。此外,从高温和高压在高压中合成的钻石显示出T C = 65 K的铁磁过渡。此外,它们还致力于合成硼掺杂和氧气掺杂的钻石。这些结果表明,在掺杂的钻石中开发各种功能材料的有效性,并且有必要迅速促进掺杂或表面修饰的钻石的研究和开发。
颜色 夸脱价格 加仑价格 透明着色底料 09-03869 $58.85 09-03871 $181.75 金属着色底料 09-03872 $59.75 09-03873 $181.75 105 徽章白色 09-03876 $148.95 09-03877 $483.95 110 朱诺白色 09-03878 $148.95 09-03879 $468.95 117 冰川白色 09-03880 $148.95 09-03881 $484.95 120 代托纳白色 09-03882 $149.95 09-03883 $470.95 125图森奶油色 09-03884 $148.95 09-03885 $466.95 131 黛安娜奶油色 09-03886 $148.95 09-03887 $468.95 132 太阳谷象牙色 09-03888 $148.95 09-03889 $468.95 136 柠檬黄 09-03890 $160.95 09-03891 $517.00 139 联邦黄 09-03892 $152.95 09-03893 $484.95 140 橙黄色 09-03894 $157.95 09-03895 $506.00 142A C. 鹰黄/橙色09-03896 $153.95 09-03897 $489.95 143 俱乐部黄色 09-03898 $153.95 09-03899 $489.95 145 洛克海文黄色 09-03901 $151.95 09-03902 $480.95 146 J3 OEM 黄色 09-03903 $154.95 09-03904 $490.95 151 大沼泽地绿色 09-03905 $158.95 09-03906 $506.00 156 波特兰绿色 09-03907 $154.95 09-03908 $492.95 157 Cuby Sport Trainer 绿色09-03909 $159.95 09-03910 $513.00 160 森林绿 09-03911 $152.95 09-03912 $482.95 165 湖蓝 09-03913 $149.95 09-03914 $470.95 170 巴哈马蓝 09-03915 $151.95 09-03916 $480.95 173 AN(真)蓝色 09-03917 $152.95 09-03918 $481.95 176 徽章蓝色 09-03919 $155.95 09-03920 $494.95 177 克里斯滕鹰蓝色09-03921 $154.95 09-03922 $492.95 180 巡洋舰橙色 09-03923 $155.95 09-03924 $496.95 182 南瓜橙色 09-03925 $154.95 09-03926 $493.95 183 国际奥兰
摘要 - 近年来,关于聚类算法的许多研究主要集中在提高其准确性和效率上,通常以牺牲可解释性为代价。但是,由于这些方法越来越多地应用于医疗保健,金融和自主系统等高风险领域,因此对透明和可解释的聚类结果的需求已成为一个关键问题。这不仅需要获得用户信任,而且还需要满足这些领域不断增长的道德和监管要求。确保可以清楚地理解和合理的聚类算法的决策是基本要求。为了满足这一需求,本文对可解释的聚类算法的当前状态进行了全面且结构化的综述,并确定了关键标准以区分各种方法。这些见解可以有效地帮助研究人员对特定应用程序环境的最合适的可解释聚类方法做出明智的决策,同时还促进了既高效又透明的聚类算法的开发和采用。
缩写:SCs,超级电容器; SCs,微型超级电容器;CNTs,碳纳米管;GO,氧化石墨烯;rGO,还原氧化石墨烯;LrGO,激光还原氧化石墨烯;GOQDs,氧化石墨烯量子点;GQDs,石墨烯量子点;CNTs,碳纳米管;MWCNTs,多壁碳纳米管;HOPG,高度有序热解石墨;MOFs,金属有机骨架;LCVD,激光化学气相沉积;LIG,激光诱导石墨烯;LSG,激光划刻石墨烯;PLD,脉冲激光沉积;MAPLE,基质辅助脉冲激光蒸发;RIMAPLE,反应逆基质辅助脉冲激光蒸发;LIFT,激光诱导正向转移;LIBT,激光诱导后向转移;LIPSS,激光诱导周期性表面结构;PET,聚对苯二甲酸乙二醇酯; PVDF,聚偏氟乙烯;PI,聚酰亚胺;LIP,磷酸铁锂
ningthoujam babulu和n surbala devi摘要进行了锅实验,以检查单个超级磷酸盐(SSP),岩石磷酸盐(RP)和磷溶解细菌(PSB)对磷及其在酸土中摄取的磷的影响。与未经处理的控制相比,所有磷处理土壤的实例均表现出更高水平的可用磷及其在作物生长的不同阶段的吸收。与未经处理的对照进行比较,所有经过磷处理的土壤的可用P及其在作物生长的不同阶段的吸收明显更高。在用50%SSP + 50%RP + PSB处理的土壤中观察到可用的P明显更高。在50%SSP + 50%RP + PSB的帕迪中记录了相对较高的磷摄取,然后是25%SSP + 75%RP + PSB。在50:50与PSB结合使用SSP和RP的应用可维持恒定的磷池,以提供可用性和农艺有效性。psb提高了应用的SSP和RP的效率,从而增加了对农作物的磷的可用性,从而最终可以提高酸性土壤中稻田的产量。关键字:稻田,磷溶解细菌,单个超磷酸盐,岩石磷酸盐,营养吸收1。引言磷是植物生长所需的三种主要大量营养素之一,在各种代谢过程中起着至关重要的作用,包括能量转移,光合作用以及核酸和蛋白质的合成(Roch等,2019)[27]。土壤中的一般磷含量约为0.05%(按重量),只有0.1%的含量可用于植物摄取。磷在土壤中的可用性通常由于其强烈的固定和固定反应而受到限制,从而导致农作物的磷次磷摄取(Richardson等,2011)[26]。由于Al和Fe的固定,植物或Ca和Mg无法访问,或者Ca和Mg无法被植物吸收(Murphy and Sims,2012)[20]。为了减轻与磷缺乏症相关的挑战,农民通常采用磷肥料来增强养分利用率并促进植物生长。在这些肥料中,单个超级磷酸盐(SSP)和磷酸二硫酸盐(DAP)由于其释放速率变化和植物的可及性而被广泛使用(Azeem等,2018)[3]。他们为植物提供了容易获得的磷。以及与外部进口肥料相关的高成本,磷酸盐肥料的不加区分使用也有害。可以提及以下作用:过度的磷吸收导致磷毒性,从而提高植物组织中的磷浓度并破坏营养平衡;硼的毒性;铜吸收降低;铁在土壤中的固定;并防止根部吸收铁(Jupp等,2021和Renneson等,2016)
具有双自由基特征的多环芳杂环 (PAH) 的分子拓扑合成源于分子内偶联的突破。在此,我们报道了选择性 Mn(III)/Cu(II) 介导的 C − P 和 C − H 键断裂,以获得具有螺旋或平面几何形状和不同阳离子电荷的坚固的供体稠合磷鎓。前一种螺旋结构包含一个共同的磷酸[5]螺旋化受体和不同的芳胺供体,而后一种平面结构包含一个磷酸[6]螺旋化和相同的供体。这些前所未有的供体-受体 (D − A) 对表现出独特的拓扑依赖性光电特性。折叠螺旋自由基中心具有极端的电子缺陷状态和空间隔离,具有高度的双自由基特性 (y 0 = 0.989)。此外,巧妙的电荷转移 (CT) 和局部激发 (LE) 跃迁成分促进了不同溶剂中不同的杂化局部和电荷转移 (HLCT),赋予了 0.78 eV (~217 nm) 的最大发射带隙变化。阳离子发射也可以通过拓扑定制和极性依赖的 HLCT 从蓝色区域调整到近红外区域,这可以在兼容的手性薄荷醇基质中输出额外的圆偏振发光,同时提高量子效率并保留深红色辉光。值得一提的是,原子精确的 Mn(III) 卤化物已被史无前例地捕获并确定用于 C-P 键活化。
摘要:磷 (P) 是植物生长必需的常量营养素之一,是提高多种作物生产性能的必需资源,尤其是在风化程度较高的土壤中。然而,以肥料形式施用的大部分营养素在中期会变得“惰性”,无法被植物吸收。合理使用磷对环境可持续性和社会经济发展至关重要。因此,需要替代方法来管理这种营养素,而使用磷溶解微生物是一种优化作物利用磷的选择,可以探索土壤中可用程度较低的营养成分,并减少对磷肥的需求。本研究的目的是讨论磷的重要性以及微生物如何促进磷在农业中的可持续利用。在这篇综述研究中,我们介绍了几项关于微生物作为土壤磷动员剂的作用的研究。我们描述了养分对植物的重要性以及与其自然储备的不可持续开发和化学肥料的使用有关的主要问题。我们主要强调微生物如何构成释放养分惰性部分的基本资源,其中我们描述了几种溶解和矿化的机制。我们还讨论了接种磷溶解微生物给作物带来的好处以及将其用作生物接种剂的做法。使用微生物作为接种剂是可持续农业未来的可行资源,主要是因为它的应用可以显著减少磷的使用,从而减少磷及其储备的开发。此外,必须进行新的研究以开发新技术、勘探新的生物产品和改进管理实践,以提高农业中磷的利用效率。