我们非常荣幸地向您呈现《宾夕法尼亚大学生物伦理学杂志》第 XX 卷第 1 期,题为“重温旧事,探索新事物”。在我们杂志的整个生命周期中,我们有幸发表了来自全国各地的广泛主题的文章。自《宾夕法尼亚大学生物伦理学杂志》创刊以来,一些道德困境经常被重新审视,每次都从新颖的角度进行探索,而其他一些困境则随着时间的推移而出现,反映了我们不断变化的世界。在本期中,我们将前沿研究与既定的医疗实践相结合。通过这样做,我们希望为围绕健康和医疗保健服务的持续对话增添细微差别,运用生物伦理学推动更美好、更光明的未来。第一篇文章“激励筛查乳房 X 线照片:付费还是不付费”讨论了乳房 X 线照片作为筛查程序在最近推动激励计划的背景下的重要性。大峡谷州立大学的作者 Erica Wiencek 将对当前事态的有力分析与她自己作为诊断医学超声医师的经验相结合。第二篇文章《心灵隐私:读心 AI 的伦理和监管影响》探讨了 AI 的热点问题以及如何使用这项技术来解读他人的想法。作者 Kerissa Duliga(东北大学)概述了读心技术的发展,并讨论了目前缺乏 AI 监管,尤其是与读心能力相关的监管。第三篇文章《尿液好手:肾脏市场合法化》探讨了用合法肾脏市场补充器官移植过程的利弊。作者 Sriya Bandi(芝加哥大学)谨慎地处理了这个敏感话题,将生物伦理分析与对健康的社会决定因素的考虑相结合。我们的“生物伦理简讯”部分涵盖了生物伦理和健康领域的当前事件。在第一篇简讯中,Manav Parikh 讨论了全国和国际禁止生殖系基因组编辑的可行性和使用情况。在第二篇简报中,Ashrit Challa 采用生物伦理学方法探讨食品可及性和安全性概念,这些主题通常仅从卫生政策角度进行探讨。在反思联合国题为“2024 年世界粮食安全和营养状况”的报告时,本简报旨在将全球健康概念的食品正义与核心生物伦理原则的正义联系起来。我们要感谢我们的出版商 Claire Jun 和出色的编辑团队,没有他们,本期杂志就不可能问世。此外,还要特别感谢我们的教师顾问 Harald Schmidt 博士在整个编辑和出版过程中的支持。我们希望您喜欢这期宾夕法尼亚大学生物伦理学杂志,并激励您进一步参与生物伦理学领域。如有任何问题、意见,请联系我们。或通过 pbjeditorinchief@gmail.com 提出合作想法。最后,“重温旧事,探索新事物”标志着 Penn Bioethics Journal 出版了第 20 卷!自 2005 年春季出版第一本题为“大脑及其他……”的出版物以来,我们的编辑团队已大大壮大,这让我们能够扩大期刊的影响力。我们很荣幸能与多元化的作者和读者群体分享我们对生物伦理学的热情,我们期待 Penn Bioethics Journal 的未来!
以及基于碳的纳米电子和旋转型的潜在应用。除了可调节的边缘结构和宽度外,GNR中引入曲率是其化学物理特性修饰的强大结构特征。在这里,我们报告了第一个基于pyrene的GNR(PygNR)的有效溶液合成,该溶液通过一锅K区氧化和其相应良好可溶性四氢苯二酚基于多苯乙烯前体的曲线几何形状和曲面几何形状。有效的A 2 B 2型铃木聚合和随后的Scholl反应可提供高达〜35 nm长的弯曲GNR轴承和扶手椅。模型化合物(1)的构造是从四氢苯二酚基的寡苯基前体中的pygnr切割,证明了单锅K区域氧化和Scholl环化的概念和效率,这是由单晶X射线衍射分析清楚地揭示的。PYGNR的结构和光学性质由Raman,FT-IR,固态NMR和UV-VIS分析研究,并支持DFT计算。pygNR显示在680 nm处的吸收最大值,表现为〜1.4 eV的狭窄光带隙,作为低频带GNR的资格。此外,PYGNR上的THZ光谱估计其
复合材料是多组分系统,其功能由其成分之间的相互作用决定。化合物的均匀性取决于材料、材料之间的相互作用和合成,并对性能产生重大影响。纳米粒子已被证明可以通过降低界面张力变成表面活性剂来促进不混溶液体的混合 [ 1 ],并可能导致不混溶和可混溶聚合物溶液之间的可逆转变。将磁性纳米粒子添加到分子铁电体中可以合成多铁性材料 [ 2 – 4 ]。尽管自旋交叉复合物本身可以形成纳米粒子 [ 5 – 7 ],但将磁性纳米粒子添加到自旋交叉分子中的研究很少。 [Fe(Htrz) 2 (trz)](BF 4 )(Htrz = 1H-1,2,4-三唑,trz − = 去质子化三唑配体)[7 – 12]就是这样一种自旋交叉复合物,它也已与纳米粒子结合[13, 14]。[Fe(Htrz) 2 (trz)](BF 4 )的特点是自旋态随温度变化而转变,从而引起电导率的变化[9, 15 – 19]。这种特定分子的自旋交叉转变温度通常为 (340–360) K,在接近室温时产生自旋态双稳态[8 – 12, 15 – 20]。通过添加聚苯胺 (PANI) [ 19 , 21 ] 或聚吡咯 [ 21 , 22 ],所得均质复合材料的导通电阻可降低至 < 1 Ω · cm,从而使更小的分子器件成为可能 [ 23 ],而不会因高阻抗而导致长延迟时间。为了了解自旋交叉复合物中自旋态间双稳态协同效应的修改 [ 24 ],已经采用了多种技术 [ 25 – 27 ]。虽然用金属取代 [Fe(Htrz) 2 (trz)](BF 4 ) 中的 Fe 会降低电导率 [ 18 ],但添加 Fe 3 O 4 等金属纳米颗粒可以通过驱动形态变化完全避免此问题。充分利用此类多组分系统的潜力以及由于添加纳米颗粒而产生的修改需要
溃疡和受影响区域(图2d)。对于所有四个参数,与DSS仅组相比,用MNP治疗的结肠炎小鼠的总分均更高。这表明,尽管单独使用MNP可能不会在短期应用中对胃肠道造成严重影响(10天),但MNP在炎症性疾病模型中加剧了结肠炎的组织病理学迹象。然而,由于样本数(n = 7)和DSS模型的异质性较小,因此差异在统计上并不显着。MNP分布在血液,肝脏,肾脏和脑
摘要:用荧光材料掺杂的耳语画廊模式(WGM)谐振器在生物传感中发现了极大的应用。他们不需要特殊条件来激发WGM内部的激发,这为体内感测提供了基础。当前,体内WGM传感器的材料问题是实质性的,因为它们的荧光应具有稳定的光学特性,并且应该具有生物相容性。为了解决这个问题,我们提出了5-7 µm的WGM微孔子,其中掺杂剂由碳量子点(CDS)制成。cds是生物相容性的,因为它们是由碳产生的,并显示出明亮的光学发射,根据激发波长,它显示出不同的频带。此处开发的WGM传感器通过检测牛血清白蛋白分子测试为无标记的生物传感器。结果显示WGM频率转移,检测极限降低至10-16 m。
摘要 - 运动计划算法应在将它们部署到真实车辆中之前对大型,多样化和现实的场景进行测试。但是,现有的3D模拟器通常专注于感知和端到端学习,缺乏运动计划的特定接口。我们提供了一个关注运动计划的Carla模拟器的接口,例如,在交互式环境中创建可配置的测试方案并执行运动计划者。此外,我们引入了一个从基于LANELT的地图到Opendrive的转换器,从而可以在Carla中使用CommonRoad和Lanelet2地图。我们的评估表明,我们的界面易于使用,有效地创建新的方案,并可以成功整合运动计划者以求解CommonRoad方案。我们的工具在commonroad.in.tum.de上以开源工具箱的形式发布。
聚合物复合材料,而核心材料是从轻质材料中选择的。19,20表面层包含一个带有玻璃,玻璃,碳,碳ber或aramidber的聚合物基质。21 - 25这些层的目的是增强复合材料的整体耐用性和机械性能。26 - 29核心材料通常包含轻质和低密度材料,O烯聚合物泡沫,木板,铝蜂窝状或其他轻量级材料。核心材料有助于提高结构强度,同时降低了复合材料的整体密度。这种设计具有高强度和低重量的优势。由于这些优势,三明治复合材料具有广泛的应用。它们特别用于航空航天,30航空,31 - 33汽车,34 - 36海军陆战队,37构造38和运动器材。在汽车行业中,由于重量轻而可以用来改善燃料效率。39,40也可以在结构元素中使用,以提高车辆41的耐用性以及火车和Aircra工业。它们的耐用性和轻巧的重量使得可以在海洋领域的船体和游艇建造中使用它们。42,43
必须开发具有高容量电极和更环保、更经济高效的系统的高性能平面微电池,这对于为即将推出的智能小型便携式电子设备供电至关重要。为了满足这一需求,本研究以实现高容量阴极材料为中心。这涉及将聚苯胺和水预插入 V 2 O 5 纳米线以增强容量,并与平面设备结构中的 Zn 阳极结合使用以提高电荷存储性能。事实证明,所提出的直接策略不仅可以有效地将电荷存储容量从 235 mAh/g 提高到 200 mA/g 时的 384 mAh/g,还可以减少预激活过程。因此,所获得的具有高容量阴极的锌离子微电池不仅提供了 409 μ Ah/cm 2 的可观面积容量,而且还表现出显著的峰值面积能量密度和功率密度,分别为 306.7 μ Wh/cm 2 和 3.44 mW/cm 2。此外,微电池表现出缓慢的自放电电压响应,即使在 200 小时后仍能保持约 80% 的容量。这项工作提出了一种有效的策略来增强平面微电池的电化学性能,这对先进便携式电子产品的发展至关重要。
活化的碳(AC)可以添加到聚合物基质中以实现电导率,从而导致潜在的传感器应用。在这项研究中,我们评估了与聚苯二甲酸酯(PBT)/聚酰胺6(PA6)混合物混合时AC的拉伸强度。PBT/ PA6/ AC复合材料是通过0、2、4、6、8和10%AC的注射成型制备的。在国际标准化组织527标准组织之后,对样品进行了拉伸测试。PBT/PA6/2%AC,PBT/PA6/4%AC,PBT/PA6/6%AC和PBT/PA6/8%AC样品的拉伸强度分别为45.13、44.60、42.48和41.82 MPA。这些值高于没有AC的PBT/PA6混合物的(40.93 MPa)。将AC掺入PBT/PA6混合物中会增加拉伸强度。PBT/PA6/2%AC样品具有最高的拉伸强度,而PBT/PA6/10%AC样品的拉伸强度比PBT/PA6混合物低39.79 MPa。所有PBT/PA6/AC样品的拉伸模量高于PBT/PA6混合物。将AC添加到PBT/PA6混合物中时,微结构变得更小,更细,增强了凝聚力并改善机械性能。这项工作中分析的方法的可疑应用领域是,PBT/PA6混合物可以用少量AC回收为导电聚合物复合材料。
微塑料已成为全球一个巨大的问题,因此,研究其对人类和环境健康的可能影响很重要。在这项研究中,斑马鱼胚胎分别比较了两种不同尺寸的聚苯乙烯微塑料(PS -MP),分别为1 µm和3 µm,在0.01、0.1、1.0、1.0和10.0 mgl -1时,并监测高达72小时。毒性测试表明,PS-MP都没有改变胚胎的存活率和正常的孵化过程。相反,两种大小的浓度较高,导致心率和表型变化的增加。以10.0 mgl -1的浓度在幼虫中输入和积累的两个大小的PS -MP,相同的浓度导致凋亡过程的增加与氧化还原稳态变化相关。报告的结果对暴露于PS-MP的负面影响并提供了有关其毒性的新信息的现实看法,也考虑了其尺寸。