用于高频应用的具有光敏性的低 Df 聚酰亚胺 Hitoshi Araki *、Yohei Kiuchi、Akira Shimada、Hisashi Ogasawara、Masaya Jukei 和 Masao Tomikawa 东丽工业公司电子与成像材料研究实验室,3-1-2 Sonoyama,大津,滋贺 520-0842,日本 *hitoshi.araki.u8@mail.toray 我们研究了聚酰亚胺链的分子运动和极性,开发出了新型低介电常数 (Dk) 和耗散因数 (Df) 聚酰亚胺。我们发现 10-100 GHz 时的 Df 对应于 -150 至 -50 ℃ 时的分子迁移率。为了降低高频时的介电损耗 (=Df),限制低温下的分子运动非常重要。此外,减少聚酰亚胺链中的极性和柔性单元对于获得低 Dk 和 Df 的聚酰亚胺也很重要。我们利用这些知识开发了用于 RDL 的低介电损耗聚酰亚胺。结果,我们获得了新型聚酰亚胺的损耗角正切为 0.002 和介电常数为 2.7。这些聚酰亚胺可以通过正性光刻胶显影的碱性湿法蚀刻和紫外激光烧蚀法进行图案化。我们还通过混合光活性剂开发了光可定义的低损耗角正切聚酰亚胺。与传统的感光聚酰亚胺相比,新型低 Df 聚酰亚胺的微带线插入损耗更低。这些低介电损耗聚酰亚胺适用于 FO-WLP 绝缘体、中介层和其他微电子射频应用。 关键词:聚酰亚胺,低 Dk 和 Df,高频,图案化,低插入损耗 1. 简介 近年来,使用更高频率的 5G 通信技术正在不断推进,以实现高速大容量通信 [1]。此外,用于汽车防撞系统的毫米波雷达将使用超过 60 GHz 的频率 [2]。扇出型晶圆级封装 (FO- WLP) 因其封装尺寸小、制造成本低而备受半导体封装关注。高频 FO-WLP 中的再分布层 (RDL) 需要具有低介电常数 (Dk) 和耗散因数 (Df) 的绝缘体材料 [3]。特别是,采用扇出技术的封装天线 (AiP) 是 5G 时代的关键技术之一。聚四氟乙烯和液晶聚合物被称为低介电常数、低介电损耗材料。然而,这些材料在粘附性和精细图案的图案化性方面存在困难。用于 FO-WLP 再分布层的光电 BCB 介电常数低
我们探索了矩形 Kapton 薄膜上单个折痕的粘塑性行为,Kapton 薄膜是几种受折纸启发的薄纱空间结构设计中最基本的构建块。这是折痕薄膜机械行为中经常被忽视的一个组成部分,它会影响部署动力学和可重复性。首先,我们展示了一些实验,这些实验突出了 Kapton 的粘性特性对折痕产生过程的影响,以及折痕的平衡角度如何由塑性和粘度的组合决定。作为实验的一部分,我们建立了一个强大的实验程序,能够创建可重复的折痕。然后,我们将之前的建模工作扩展到一种简单的粘塑性材料中,该材料结合了标准线性模型和摩擦元素来模拟永久变形。使用一系列 Kapton 松弛测试校准材料模型。然后,我们使用它来模拟我们的折痕实验,使用商用有限元包中的 1D 梁元素。尽管定量差异仍然很大,但我们的分析能够捕捉到实验中观察到的趋势。我们的结果强调需要对聚合物薄膜的粘塑性进行进一步的实验和建模。
Fralock 的无胶层压技术 (ALT) 多区域加热器比市场上任何同类产品都更高效、更薄、更轻、更耐用,并提供许多选择,包括热障和全聚酰亚胺组件内的导热层。其他使用粘合剂将微量元素粘合到绝缘材料上的多区域加热器使它们易碎、易受高温影响,并且容易出现气穴,从而导致开裂、进一步分层和故障。使用常用粘合剂(如 PTFE)制造的设计也可能容易出现故障,因为电路“游动”时,高温下的走线彼此移动得太近,从而形成短路或“热点”。相比之下,Fralock 全聚酰亚胺加热器可以折叠、包裹甚至揉皱,而不会影响性能。
Fralock 的无胶层压技术 (ALT) 多区域加热器比市场上任何同类产品都更高效、更薄、更轻、更耐用,并提供许多选择,包括热障和全聚酰亚胺组件内的导热层。其他使用粘合剂将微量元素粘合到绝缘材料上的多区域加热器使它们易碎、易受高温影响,并且容易出现气穴,从而导致开裂、进一步分层和故障。使用常用粘合剂(如 PTFE)制造的设计也可能容易出现故障,因为电路“游动”会导致走线在高温下彼此移动得太近并形成短路或“热点”。相比之下,Fralock 全聚酰亚胺加热器可以折叠、包裹甚至揉皱而不会影响性能。
版权所有©2018杜邦。保留所有权利。Dupont Oval徽标,Dupont™和所有用®或™表示的杜邦产品是E. I. Du Pont de Nemours和Company或其分支机构的注册商标或商标。此信息对应于我们当前关于该主题的知识。仅提供您自己的实验的可能建议。但是,无意代替您可能需要进行的任何测试来确定我们产品的适用性。随着新知识和经验可用,此信息可能会进行修订。由于我们无法预料到最终用途条件下的所有变化,因此杜邦不做任何担保,并且不承担与此信息的任何使用有关的责任。本出版物中的任何内容均不得被视为根据或建议侵犯任何专利权的执行许可。K-29424(10/18)
感光聚酰亚胺 (PSPI) 作为微电子工业中的绝缘材料引起了广泛关注,并且可以直接进行图案化以简化加工步骤。本文回顾了最近关于 PSPI 的开发工作。在简要介绍之后,描述了典型的 PSPI 配方并与传统方法进行了比较,然后介绍了图案化的主要策略。然后将最近关于 PSPI 的许多报告分为两个主要术语:正性工作和负性工作,并重点介绍了它们的化学性质直至图案形成。除了本综述中提到的 PSPI 的光敏性之外,还讨论了其他重要主题,例如低温酰亚胺化和低介电常数。关键词:感光聚酰亚胺 / 聚酰胺酸 / 感光化合物 / 重氮萘醌 / 光化学放大 / 光酸发生器 / 光碱发生器 / 低温酰亚胺化 /
摘要:本文介绍了一种使用聚合物纳米片作为纳米粘合剂在聚酰亚胺薄膜上制备铜层的技术。我们采用了两种功能性聚合物纳米片:一种用作粘合层,另一种用作模板层以吸附金纳米粒子,而金纳米粒子则用作化学镀的催化剂。光反应性聚合物纳米片用于增加铜层和聚酰亚胺之间的粘附力。此外,阳离子聚合物纳米片用于吸附用于化学镀铜的金催化剂。应用该技术,化学镀铜牢固地附着在聚酰亚胺薄膜上。通过对聚合物纳米片进行光刻,可以制造微米铜线。使用聚合物纳米片作为粘合剂的工艺不需要对聚酰亚胺基板进行表面改性,并且可以制造微尺度铜线而不会排放有害废物。因此,该技术可用于下一代柔性印刷电路板制造。 [doi:10.1295/polymj.PJ2006099] 关键词 柔性印刷电路板 / 聚合物纳米片 / 化学镀铜 / 纳米粘合剂 /
聚酰亚胺是半导体工业中广泛使用的介电材料。然而,固化反应过程中产生的气体会腐蚀电子电路,从而导致可靠性问题。可以使用 EGA-MS(使用 Double-Shot Pyrolyzer)(技术说明编号 PYA3-001)以及 TGA 研究这种气体释放。图 1 显示了聚酰亚胺薄膜的固化反应。首先,将 BPDA 和 3,3'-DDS 在较低温度下加热以生成聚酰胺酸。接下来,将材料进一步加热到较高温度以生成固化的聚酰亚胺。TGA 曲线(图 2)显示了固化过程中的重量损失。在 100~350ºC 和 350~450ºC 处可以清楚地看到两个不同的反应阶段。图 3 显示了 EGA-MS 对此过程的研究结果。图 2 中第一阶段 TGA 重量损失与图 3 区域 A 中演化的材料相匹配,第二阶段重量损失与区域 B 中的 EGA-MS 数据相匹配。EGA 产生的化合物通过 GC 分离和测定。使用 MS,选择离子监测显示图 3 中一些感兴趣的化合物的分布。这些结果表明,DMAc、CO2 和 H2O 是在固化过程的第一阶段产生的,而 CO2、SO2 和苯胺是在第二阶段产生的。正如这个例子所示,EGA 是解决聚合物材料问题的极其有用的工具。
材料已得到广泛研究 [1-9]。在许多此类研究中,已报告了机械性能的显著变化和各种形式的水分引起的损坏 [4-8]。例如,吸收的水分已被证明会降低树脂的玻璃化转变温度 T~ [4,5],降低复合材料的基质主导性能,如横向拉伸强度和层内剪切强度 [4-6],并导致树脂膨胀,从而引起残余应力并导致微裂纹的形成 [5, 7-10]。吸收水分的这些有害影响被归因于树脂基质的塑化和降解以及纤维基质界面的降解 [5-10]。迄今为止,大多数水分研究都涉及热固性基质复合材料(例如石墨/环氧树脂),这些复合材料在 95% 至 100% 相对湿度环境中会吸收高达 1.2% 至 2% 的重量水分(纤维体积分数 v r 在 60% 至 68% 之间)[1,2,5-7]。最近,已经开发出热塑性(半结晶和非晶态)基质复合材料,与热固性基质复合材料相比,它们吸收的水分非常少 [3,4]。这种系统的一个例子是热塑性基质复合材料,由非晶态聚酰亚胺基质 Avimid | K3B 组成,并用 Magnamite | IM7 石墨增强