摘要:由于其良好的材料特性(例如耐腐蚀、耐磨、生物相容性),聚酰胺 12(PA12)等热塑性材料因可用作金属部件上的功能涂层而备受关注。为确保涂层的空间分辨力并缩短工艺链,通过激光束(DED-LB/P)进行聚合物粉末的定向能量沉积是一种很有前途的方法。由于特征吸收带,在 DED-LB/P 装置中使用波长为 1.94 µ m 的铥光纤激光器进行研究,以在无需添加任何吸收添加剂的情况下在不锈钢基材上生成 PA12 涂层。通过红外热成像分析了能量密度和粉末质量流量的影响。此外,还通过差示扫描量热法、激光扫描显微镜、光学显微镜和交叉切割测试对涂层进行了表征。本研究结果首次证明了使用铥光纤激光器实现无吸收体 DED-LB/P 工艺的基本可行性。可实现孔隙率低、附着力好的 PA12 涂层。根据特定应用的要求,必须在 PA12 涂层的密度和表面质量之间进行权衡。使用红外热成像技术适用于现场检测因能量输入过多而导致的工艺不稳定性。
在JEC世界2025年,Arkema将推出针对工业和环境过渡挑战的创新。将引入用于电池回收和维修的新解决方案,而由Elium®树脂制成的生态设计的垂直风力涡轮机刀片将突出循环经济中的进步。Arkema还将介绍RILSAN®聚酰胺11,这是一种100%基于Bio的复合材料解决方案,以及UDX®磁带,将碳纤维和基于生物的热塑性聚合物结合在一起。此外,海科帕斯航空航天演示器将展示下一代热塑性复合材料的性能,以及来自PI高级材料的聚酰亚胺膜。Bostik今年彻底改变了工业和流动性的拆卸,揭幕了Prep DB,该底漆旨在应对车辆维修和寿命终止回收的挑战。作为开放创新策略的一部分开发,这种热激活技术使键可以破裂,从而可以拆卸组件而不会损害周围材料。与Zebra Project的JEC奖可再生能源类别提名的复合材料中的开创性循环,Arkema'sElium®树脂正在通过启用复合材料回收来推动循环经济。作为JEC创新奖的决赛入围者,Northern Light Composites将展示一个由Arkema的展台上的Elium®树脂制成的生态设计的垂直风力涡轮机叶片。进一步采取了这一承诺,Arkema将推出一部独家电影,重点介绍了首个树脂回收的工业设施的推出。通过与综合回收,贝内多,维奥利亚,欧文斯·康宁和乔马拉特的战略合作伙伴关系,使这一突破成为可能,将综合回收转化为工业且经济上可行的现实。推动高性能和可持续性RILSAN®聚酰胺11的边界用于生产100%基于生物的复合材料,用于运输,航空航天,体育和消费品。具有优化的熔点,RILSAN®聚酰胺11可以轻松地使用自然纤维(例如亚麻,大麻和竹子)而不会降解。聚酰胺11和天然纤维均来自可再生资源,使这些复合材料与传统材料相比更具可持续性和可回收性。
具有可伸缩方法的聚合物中的微孔微孔度具有巨大的潜力,可以进行节能分子分离。在这里,我们报告了一种双相分子工程方法,可以通过界面聚合制备微孔聚合物纳米膜。通过整合两个微孔生成单元,例如水溶性Tröger的碱基(TBD)和一个扭曲的螺旋氟二氟烯基序(SBF)基序,最终的TBD-SBF聚酰胺显示出前所未有的高表面积。与传统化学制备的对照膜相比,具有中等分子量截止(〜640 g mol-1)的溶剂渗透率高达220倍(〜220 nm),该溶剂渗透率提高了220倍,而传统化学作品中的对照膜相比,目前均优于当前报道的聚合物膜。,我们还通过探索水相单体的同类异构体作用来操纵微孔力,突出了基于SBF的微孔聚酰胺对碳氢化合物分离的巨大潜力。
丙烯腈丁二烯苯乙烯。丙烯腈/丁二烯/丙烯酸酯。丙烯腈/氯化聚乙烯/苯乙烯。丙烯腈/乙二烯 - 丙烯 - 二烯/苯乙烯。丙烯腈/甲基丙烯酸甲酯。丙烯腈/苯乙烯/丙烯酸酯。醋酸纤维素。乙酸纤维素丁酸酯。丙酸纤维素丙酸酯。脆性甲醛。羧甲基纤维素。硝酸纤维素。丙酸纤维素。三乙酸纤维素。乙基纤维素。乙烯丙烯酸乙烯酸乙烯酸酯。 乙烯/甲基丙烯酸。 环氧或环氧树脂。 乙烯/丙烯。 乙烯/丙烯/二烯。 乙烯/四氟乙烯。 乙烯乙酸乙酯。 乙烯/乙烯基醇。 perfluoro(乙烯/丙烯):四氟乙烯烯丙基二氟丙烯。 呋喃甲醛。 甲基丙烯酸酯/丁二烯/苯乙烯。 甲基纤维素。 三聚氰胺 - 甲醛。 三聚氰胺 - 苯酚 - 甲醛。 聚酰胺。 聚酰胺酰亚胺聚丙烯硝基烯。 聚酯氨基烷烷。 聚丁烯-L。聚丁烯三乙酸酯。 聚碳酸酯。 多氯二甲基。 邻苯二甲酸酯。 聚乙烯。 聚醚块酰胺。 聚醚酮。 聚醚酰亚胺。 聚乙烯氧化物。 聚醚硫。 聚对苯二甲酸酯。 聚醚硫。 聚醚聚氨酯。 苯酚甲醛。乙烯丙烯酸乙烯酸乙烯酸酯。乙烯/甲基丙烯酸。环氧或环氧树脂。乙烯/丙烯。乙烯/丙烯/二烯。乙烯/四氟乙烯。乙烯乙酸乙酯。乙烯/乙烯基醇。perfluoro(乙烯/丙烯):四氟乙烯烯丙基二氟丙烯。呋喃甲醛。甲基丙烯酸酯/丁二烯/苯乙烯。甲基纤维素。三聚氰胺 - 甲醛。三聚氰胺 - 苯酚 - 甲醛。聚酰胺。聚酰胺酰亚胺聚丙烯硝基烯。聚酯氨基烷烷。聚丁烯-L。聚丁烯三乙酸酯。聚碳酸酯。多氯二甲基。邻苯二甲酸酯。聚乙烯。聚醚块酰胺。聚醚酮。聚醚酰亚胺。聚乙烯氧化物。 聚醚硫。 聚对苯二甲酸酯。 聚醚硫。 聚醚聚氨酯。 苯酚甲醛。聚乙烯氧化物。聚醚硫。聚对苯二甲酸酯。聚醚硫。聚醚聚氨酯。苯酚甲醛。全氟烷氧基烷烃。聚酰亚胺。 甲基丙烯酸甲酯。聚酰亚胺。甲基丙烯酸甲酯。
rilsan®精细粉末是从可再生资源获得的专业聚酰胺粉末。rilsan®T范围设计用于使用流化的床浸涂层涂层金属零件。它们提供了防止磨损,撞击,腐蚀,化学物质以及涂鸦的优越保护。请咨询Arkema文献以获取申请方法和建议。
有机材料(例如树皮和生物炭)可以是治疗雨水的有效过滤材料。但是,这种过滤器在保留微塑料(MPS)(一种新兴的雨水污染物)中的效率尚未得到充分研究。这项研究研究了通常与雨水相关的MP的去除和运输。将不同的MP类型(聚酰胺,聚乙烯,聚丙烯和聚苯乙烯)混合到25、50和100 cm长的水平树皮和生物炭过滤器的最初2 cm材料中。MP类型由25-900μm的球形和碎片形状组成。过滤器的水流为5 mL/min,持续一周,并通过μFTIR成像分析了MPS的总废料。为了获得更深入的见解,将一个100 cm的树皮过滤器副本分为10 cm段,并提取并计数每个段中的MPS。结果表明,在所有生物炭和树皮过滤器中,MP有效保留了> 97%。但是,无论滤波长度如何,在所有废水中都检测到MP。流出浓度分别在树皮和生物炭废水中测量5 - 750 MP/L和35-355 MP/L,> 91%的MP计数由小型(25μm)聚酰胺球形颗粒组成。将所有数据结合起来,使用更长的过滤器发现了平均MP浓度的降低,这可能归因于25和50 cm滤波器中的引导。树皮介质中MPS的ALYSES显示,大多数MP都保留在0-10 cm段中,但有些MPS进一步运输,其中19%的聚酰胺保留在80 - 90 cm段中。总体而言,这项研究表明,树皮和生物炭过滤器保留国会议员的有希望的结果,同时强调了系统堆积过滤器以减少污染雨水对环境的MP排放的重要性。
ERPRO 3D FACTORY (E3DF) 是一家成立于 2017 年的法国公司,专门从事大批量增材制造。自成立以来,E3DF 已经生产了超过 1900 万个零件,其中大部分都是用 100% 生物基聚酰胺 11 粉末制成的。阿科玛将收购 E3DF 10% 的股份,以获得新的专业知识并加速其高性能聚合物新应用的开发。阿科玛于 2018 年与 E3DF 建立了密切的合作伙伴关系,旨在利用其独特的一系列生物基和可回收特种聚酰胺以及其 N3xtDimension ® 先进液体 UV 固化树脂开发化妆品、医疗、汽车和眼镜应用领域的众多项目,这些树脂非常适合快速增长且要求苛刻的 3D 打印市场。通过对 E3DF 投资 10%,阿科玛将成为该公司战略委员会的成员,从而加强其现有的合作伙伴关系。创新解决方案设计商阿科玛与大批量增材制造专家E3DF的强强联合,将加速3D打印领域新型高附加值应用的开发。
Euretek 3606 Polyamidoamine preparation 0.5-1.0 at 75°C 150-170 free ≤ 12 Euretek 3607 Polyamidoamine preparation 9.0-19.0 at 25°C 220-245 free ≤ 12 Euretek 505 Polyamidoamine preparation 1.0-1.5 at 75°C 380-400 Xi ≤ 12 Euretek 510 Polyamidoamine preparation 3.0-5.0 at 75°C 190-210 Xi ≤ 10 Euretek 514 S Polyamidoamine preparation 2.9-3.1 at 75°C 237-253 Xi ≤ 12 Euretek 530 Polyamidoamine preparation 7.0-12.0 at 25°C 190-210 free ≤ 12 Euretek 531 Polyamidoamine preparation 12.5-22.5 at 25°C 180-210 Xi ≤ 12 Euretek 540 Polyamidoamine preparation 2.2-4.0 at 75°C 440-500 Xi ≤ 12 Euretek 541 Polyamidoamine preparation 12.0-18.0 at 25°C 170-190 free ≤ 10 Euretek 545 Polyamidoamine preparation 1.0-2.5 at 75°C 350-380 Xi ≤ 14 Euretek 547聚酰胺胺制备0.1-0.3在50°C 200-240xi≤10euretek 549聚酰胺胺制剂5.0-9.0在50°C 265-305xn≤12
摘要 目前,几乎无法想象一个没有塑料的世界。由于塑料成本低、用途广泛、经久耐用、强度/重量比高,塑料被广泛应用于经济的各个领域,如包装、建筑、运输、医疗保健和电子产品。然而,塑料使用后的耐久性成为一个环境问题,因为大部分塑料垃圾最终被填埋、焚烧或非法丢弃,污染生态系统并导致全球变暖。减轻这些影响的一个有希望的替代方案是开发生物塑料,生物塑料是生物基材料、可生物降解材料或两者兼而有之。生物塑料包括聚乳酸 (PLA)、聚羟基脂肪酸酯 (PHA)、生物基聚酰胺 (PA) 和聚丙烯 (PP),它们有可能在各种应用中取代传统塑料。全球生物塑料产量正在增长,预计到 2028 年将达到 743 万吨,这得益于对更可持续替代品的需求。尽管存在生产成本高、性能不如合成塑料等挑战,但对研发的投资有望改善这些材料。本文回顾了未来几年最具制造潜力的生物塑料。随着技术进步和环保意识的增强,生物塑料有望成为向低碳循环经济转型的关键。关键词:生物塑料、聚乳酸、聚酰胺、聚羟基脂肪酸酯、聚合物、聚丙烯。
摘要:将五种不同尺寸(170、190、210、230和250 nm)的聚(苯乙烯甲基丙烯酸酯 - 丙烯酸丙烯酸)光子晶体(PCS)(PCS)应用于三种普通织物,即多酰胺,聚酯和棉花。使用扫描电子显微镜和两种UV/VIS反射分光光度计技术(集成球体和散射测量法)分析了PC涂层的织物,以评估PC的自组装以及获得的光谱和颜色特性。结果表明,织物的表面粗糙度对PC产生的颜色产生了重大影响。聚酰胺涂层的织物是唯一具有虹彩效果的样品,比聚酯和棉样品产生更加生动和鲜艳的色彩。观察到,随着入射光角的增加,随着新反射峰的形成,反射峰的高营养偏移发生。此外,用照明剂的光源在聚酰胺样品上进行了颜色行为模拟。照明剂A模拟显示出比用D50照明的模拟颜色更绿色和黄色的结构色。使用散射法对聚酯和棉花样品进行分析以检查虹彩是否在眼检查后看不见,然后证明存在于这些样品中。这项工作可以更好地理解结构颜色及其虹彩如何受到纺织底物形态和纤维类型的影响。