敬拜永生神 2025 年 1 月 12 日 前奏 当我们安静下来敬拜时,请使所有手机和电子设备静音。 公告和欢迎 迪·哈蒙德 (Dee Hammond),传教牧师 崇拜上帝 登高之歌 上帝的子民聚集在一起,一起唱歌,一起前往耶路撒冷敬拜上帝。 会众 站起来,为耶稣站起来 #571 站起来,为耶稣站起来,你们十字架的士兵;高举他的皇家旗帜,它绝不会遭受损失:从胜利到胜利,他将领导他的军队,直到每个敌人都被征服,基督确实是主。 站起来,为耶稣站起来,靠他的力量站立;肉体的手臂会让你失望,你不敢相信自己:穿上福音的盔甲,每一件都带着祈祷穿上;在职责召唤或危险的地方,永远不会缺少。呼召崇拜 出埃及记 15:1-3 那时,摩西和以色列人向耶和华唱歌,说:“我要向耶和华歌唱,因他大大战胜,将马和骑马的投在海中。耶和华是我的力量,是我的诗歌,他也成了我的拯救;这是我的神;我要称赞他,我父亲的神,我要尊崇他。耶和华是战士;耶和华是他的名。” 祈祷 真理宣言 使徒信经 我信全能的父上帝,创造天地的主。 我信我们的主耶稣基督,神的独生子,因圣灵感孕,由童贞女马利亚所生。他在本丢彼拉多手下受难,被钉在十字架上,受死,埋葬。第三天他从死里复活,升天,坐在全能父上帝的右边。祂要从那里降临,审判活人和死人。我信圣灵,圣而公之教会,圣徒相通,罪得赦免,身体复活,永生。阿们。
热带地区精神疾病的性质比对某些环境和文化因素的患者的影响更大,而不是受到热带疾病的任何特定特征。在尚未完全发展医疗保健和健康教育标准的地方,身体发育的异常,尤其是影响大脑皮层发展的人,非常重要。例如,蛋白质能量营养不良可能导致大脑成熟和效率的缺陷,从而降低了大脑管理其行为功能的能力,并可能导致浓度,远见,预见,判断和抑制性控制抑制性控制对强烈经历的情绪的能力受损。此外,在识字前社会中普遍存在的某些文化态度会影响对疾病的次要反应的类型:例如,急性症状往往是鲜花和不受欢迎的,并且经验丰富,经验丰富和外在的情绪,例如hil虫,恐怖,恐怖,愤怒和悲伤是规则,而不是例外。某些热带疾病是严重干扰大脑功能的直接原因,而其他热带疾病仅影响较细的大脑控制,因此通常会控制恐惧,焦虑和其他人格特征。这些特定的脑综合征可能是急性或慢性的,可能是由显然微不足道的物理原因触发的。急性脑综合症在热带国家似乎更为常见,这可能是因为在成年人中,脑皮质储备少于应有的,因为较早的最小脑损伤的患病率。正式的精神病反应当然在热带国家也可以看到,但是例如精神分裂症,卑鄙和躁狂状态的表达,抑郁症是由潜在的个性和患者的文化背景所着的。也许在其他环境中,行为与肉体之间的亲密关系比在热带地区生活的人群中更清晰,这一点重要的是,这些地区的卫生工作者应意识到早期或同时的身体疾病在行为障碍中所起的作用。
这项研究旨在评估补充益生菌的饮食(芽孢杆菌),益生元(壳聚糖)和合成生物学在120天内的生长性能,先天免疫系统,抗氧化剂水平,肠道社区和粮食质量。实验性鱼(15.5±0.352g)随机分布到12个矩形聚乙烯储罐中,每个储罐60鱼。测试了四种重复的四种治疗方法:对照,益生菌(Sanolife®Pro-F,Pro),益生元(壳聚糖,PRE)和合成生素(益生菌和壳聚糖的组合,SYN)。结果表明,在益生菌治疗中,溶解的氧浓度显着增加和pH水平提高。与对照组相比,所有处理中的联合氨(NH3)水平均降低。益生元补充的饮食显着改善了最终体重,最终长度,体重增加,状况因子,平均每日体重增加,特定的生长速度和存活率。在补充益生菌的所有处理中,血清溶菌酶活性和一氧化氮水平均高。此外,益生菌组中肝脏中的超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GPX)酶水平明显更高,而马发二醛(MDA)水平降低。益生菌的添加和合成生的存在增加了四个月的鱼类肠和池塘水的总细菌数量。病原性气管疏松性仅在对照组的水中鉴定出来。大肠杆菌和沙门氏菌。16S rDNA基因测序在益生菌处理的水中鉴定出了sphaericus sphaericus,在对照处理的肉体中鉴定出cile胶菌菌。添加芽孢杆菌菌株和壳聚糖分别增强了尼罗罗非鱼(Oreochromis niloticus)的生长和健康。
结节症是一种以非肉芽肿性炎症为特征的多系统综合征,尽管坏死性结节性肉芽肿被认为是该疾病谱系的一部分。药物诱导的结节病样反应(DISR)是一种全身性肉芽肿反应,在组织病理学上与原发性结节病相同,主要是在使用诸如肿瘤坏死因子α拮抗剂之类的生物学之后描述的,但也是抗CD20(Rituximab)。作者提出了一个非常罕见的病例,即患有原发性Sjögren综合征(PSS)的女性开始进行利妥昔单抗以进行疾病控制,该疾病控制以3年的渐进式渐进性全身性肉体反应进化。人们对B细胞在结节病中的潜在作用有很多猜测。的发现表明,在结节病患者中,B记忆细胞的减少和调节性B细胞的幼稚和活性子集的增加,与利妥昔单抗治疗后,与幼稚的B细胞的重生相似。此外,与常见的可变免疫缺陷性和免疫重建综合征相关的肉芽肿性淋巴细胞间质性肺疾病中,人类免疫缺陷病毒在人类免疫缺陷病毒中表现出与DISR的临床相似性,并且可以帮助公开新的细胞生成和生理途径。对作者的知识,这是全身性结节病的第一报道,类似于抗CD20治疗后的坏死性肉芽肿的反应,也是PSS患者中的首次描述 - 强调了识别性肌瘤性肉芽肿性肉芽肿的重要性的重要性。尽管这是一种非常罕见的不利影响,但该病例增强了在生物制剂后积极寻找DISR的重要性,即使在接受救助标签疗法(例如利妥昔单抗)的患者中也是如此。
如今,能源转换在可持续增长和发展中发挥着至关重要的作用。过去,能源转换主要通过基于旋转机械的机电转换器实现。近年来,能源转换过程则由多种电力电子电路完成 [1]。电力电子转换器是一种开关电路结构,用于实现高效的能源转换系统,可用于各种应用,例如可再生能源转换、智能电网布置、能源存储管理和可持续运输。电力电子转换器系统由多种开关拓扑组成,每种拓扑都与特定应用相关。人们不断研究电力电子电路解决方案,以改进现有的转换器拓扑或创建新的拓扑。此外,电力电子设备和无源元件技术的进步导致转换器的品质不断发展,例如高效率、高增益、高功率密度和快速瞬态响应。用肉体的比喻来说,肌肉由拓扑结构表示,而电力转换器的大脑功能则通过越来越多的控制技术来实现。先进的拓扑和控制方法对于满足现代应用日益严峻的需求必不可少。因此,需要研究先进的设计标准、使用创新技术和改进的调节技术,以实现更高效、紧凑、经济高效和可持续的能源转换系统的目标 [ 2 ]。在功率转换器应用于能源转换的领域,多篇文章促进了科学界知识的增长,这些科学界参与了出版物并使用 Energies 来交流和建立这一战略技术发展领域的知识和技能。在本社论中,我们选择了各种文章来传播科学界阅读和引用最多的技术科学贡献,无论是属于 Energies 杂志还是其他出版物。在选择重要文章时考虑的时间范围是 2020 年至 2022 年。下一节根据主要主题对所考虑的论文贡献进行了分类。此外,还总结了每篇文章的具体重点和价值。
现代人工智能系统能够与人类竞争解决各种各样的问题。 2023年3月,特斯拉、SpaceX和Twitter管理层、Pinterest和苹果联合创始人发表公开信,概述了暂停人工智能技术开发的理由,指出了对社会的主要风险[1]。信中作者认为,强人工智能的广泛应用将导致社会生活的深刻变化,作者由此得出结论,必须仔细规划这项技术的管理、控制和审计,但由于人工智能实验室之间为争夺其产品开发和实施的主导地位而展开无节制的竞争,目前尚未做到这一点。在科技、技术、人文不平衡的背景下,社会思想的滞后是一个显著的问题[2,p. 28]。可以假设,领先的 IT 巨头的负责人正试图通过在开发实施过程中暂停一段时间来减少这种不平衡。但这种停顿能够持续足够长的时间吗?目前,人工智能服务是用户手中的工具,而目标设定则由人来完成。人类的许多功能已被委托给技术,但理性和意识领域仍然没有实现自动化。但这只是时间问题。如果目标设定活动的基础是对世界的不满和改变世界的需要,并赋予其行动者必要的形式,那么人工智能将如何基于何种不满来想要改变世界?与被剥夺了肉体、精神和其他决定需求意识和目标设定的人类特质的人相比,人工智能会产生哪些需求?如果某个行为是目标设定、意图或意图的结果,那么我们就可以谈论行为者意识的存在。永恒的问题出现了:什么是意识?我们是否可以说意识的出现只是生物体所固有的,或者如果有充分的理由,意识有可能出现在人工智能中?如果是,理由是什么?总的来说,谈论意识与人工智能的关系是否有意义?任务是赋予人意识吗?或许,对这个问题进行推理是为了阻止人工智能出现意识,通过消除先决条件来排除这种可能性。人工智能获得独立性可能会剥夺人类的决策者角色,有时甚至会有消除人类的风险[2,p. 21]。最近涉及人工智能的事件
新颖的测试方法(镰刀确认)以区分镰状细胞贫血与镰状细胞特征,以在发展中国家蒂姆·兰多夫(Tim R. R. R. R. R. R. R. Randolph),珍娜·惠纳(Jenna Wheelhouse)摘要这项研究的目的是开发一种诊断测试方法来检测HBS,区分镰状细胞的肉体纯合子,从而使杂质者与杂质测试和胜利的障碍物相处的领域,这些方法是在实验室中涉及的障碍。对镰状细胞阳性和阴性的血液样品进行标准血红蛋白溶解度测试,然后进行多种离心和过滤程序。评估了每个过程的能力,可以从样品中删除不溶性HBS。通过分光光度法或视觉估算的分光光度测量(HBA,HBA 2和HBF)的血红蛋白类型,允许样品分为三种基因型(AA,AS和SS),这是由血红蛋白电泳确认的。从圣路易斯大学和枢机主教Glennon儿童医院获得了识别的EDTA血液样本,并在圣路易斯大学的临床实验室科学系进行了测试。主要结果指标是溶解度溶液的浊度;离心后,上清液的颜色和溶液表面的材料;沉淀被困在滤纸上;滤液的吸光度;和血红蛋白电泳模式。离心和过滤成功地将HBS与HBA /A 2 /F分离,从而使七个镰状细胞与16个杂合子的七个镰状细胞分化,其灵敏度和特异性为100%。索引术语:镰状细胞贫血,血红蛋白病,镰状细胞病,镰状细胞性状,第三世界国家这种方法有可能可靠地区分纯合子与杂合的镰状细胞患者,并且快速,廉价且简单。这些特征使镰刀在海地和非洲等发展中国家确认了一种理想的方法,镰状细胞贫血很普遍,现代诊断方法(如电泳,HPLC和核酸测试)是不切实际的。
鸵鸟(Struthio Camelus)是一只鸟,具有相当大的商业价值,涉及剥削其肉,皮革,羽毛和鸡蛋,包括贝壳。大多数肉都位于大腿和背部。鸟类的心脏与哺乳动物的心脏相似,除了某些特征,因为它相对较大并且收缩频率较高。它是圆锥形的,顶端仅由左心室形成。在鸵鸟中,心脏位于Ster Num的凹面表面上。它被尾尾,其长轴垂直于身体的腹壁。作为一种大型奔跑的鸟,鸵鸟需要一个足够的心血管系统。因此,需要对心脏正常形态的描述来开发这种鸟的商业剥削。屠宰后立即收集了一个成年雄性鸵鸟的心脏。器官固定在10%甲醛溶液中,其中浸入10天直到解剖。观察到表面结构并进行了光编码。然后将心脏从顶点打开到耳形,以描述内部结构和光照文献。外部心包在纤维上心包和浆液心包的内脏层中(脑膜)(胸膜)上有一层脂肪组织。中心很小;右心房比左边小。耳环是心房的延伸,并且比哺乳动物的肌肉更突出。对心脏的血液供应是由右冠状动脉(肺部躯干和右上耳中的)和左冠状动脉(肺部躯干和左耳中的)进行的,该动脉的分支与马相似。左上力图在左端的内壁上有两个褶皱,由薄但相对广泛的肌肉层和内膜心脏形成。在内表面上观察到左心室的壁比右心室和肉体小梁的壁厚得多。与哺乳动物中一样,左室室内瓣膜有三个阀,肌腱与乳头状肌肉有关。右心室瓣膜是心室壁的肌肉的折叠,没有肌腱或乳头状肌肉牵引它。心脏的整个内部表面衬有内膜内膜。分析的鸵鸟心与鸟类的心脏有相似之处,尽管左耳是与其他物种不同的特征。
使用遗传转化方法评估在果树种类中表达的基因的功能是一个漫长的过程,因为这些树木通常是对遗传转化的顽固性,并且在较长的幼年相中不能忍受果实。果实中的瞬时基因表达能够对与果实性状相关的基因进行功能分析,从而加速了果实生理的研究。在这里,通过使用最近开发的“ tsukuba系统”,我们成功地建立了收获的水果组织中有效的瞬态表达系统。“ tsukuba系统”利用了双子病毒复制系统和双终止仪的组合,从而确保了足够的转基因表达水平。我们使用蓝莓水果作为模型来表征该系统在果组织中瞬时表达的适用性。PTKB3- EGFP载体是通过浸润到几种蓝莓品种的水果组织中引入的。我们发现,果实灌注后4-6天,果实中的瞬时GFP荧光。农杆菌悬浮液很容易注入柔软的成熟果实,GFP强烈表达。然而,硬质果实无法通过农业悬浮液渗透,很少检测到GFP。然后,我们测试了开发系统对其他果树的适用性:六个家庭,17种和26种品种。GFP荧光。在蓝莓,鸟莓,甜樱桃,杏子和卫星普通话中,GFP高度表达并以很大一部分的肉体观察到。在Kiwifruit,Hardy Kiwifruits,柿子,桃子,苹果,欧洲梨和葡萄中,GFP荧光仅限于某些部分水果。最后,对蓝莓中的瞬态VCMYBA1过表达进行了测试,作为水果中基因功能分析的模型。瞬态VCMYBA1过表达诱导肉中的红色色素沉着,这表明VCMYBA1表达引起花青素的积累。这项研究为在水果中表达的基因的快速评估提供了技术基础,这对于长期幼年阶段的水果作物的基因功能评估研究非常有用。
钛(Ti)植入物以其机械可靠性和化学稳定性而闻名,这对于肉体再生至关重要。已经开发了各种形状控制和表面修饰技术,以增强生物学活性。尽管胶原蛋白/磷灰石骨微结构对机械功能,抗菌特性以及生物相容性,精确和多功能模式控制对重生微结构至关重要。在这里,我们开发了一种新型的成骨裁缝条纹 - 微图案MPC-TI底物,可诱导对定向骨基质组织的遗传水平控制。这种生物材料是通过微观图2-甲基丙酰氧甲基乙基磷酸胆碱(MPC)聚合物通过选择性光反应到钛(Ti)表面上产生的。Stripe-Micropatened MPC-TI底物建立了一个独特的细胞粘附界面,可通过肌动蛋白细胞骨架比对来稳健地诱导成骨细胞细胞骨架对准,并促进形成骨骼模拟骨骼的骨骼与方向的胶原蛋白/apatite consue。更多,我们的研究表明,通过激活Wnt/β -catenin信号传导途径,促进了这种骨比对过程,该途径是由强烈的细胞比对引导引起的核变形引起的。这种创新的材料对于个性化的下一代医疗设备至关重要,提供了高可定制性和骨微结构的积极恢复。调节细胞粘附和细胞骨架比对的创新方法激活了Wnt/β -catenin信号传导途径,对于骨分化和方向至关重要。的意义陈述:这项研究表明了一种新型的成骨剪裁条纹 - 微调Micropatened MPC-TI底物,该基材基于遗传机制诱导成骨细胞比对和骨基质方向。通过采用光反应性MPC聚合物,我们成功地微孔钛表面,创建了一种生物材料,从而刺激单向成骨细胞排列,并增强了天然骨模拟于天然骨模拟各向异性微观结构的形成。这项研究提出了第一种生物材料,该生物材料人为地诱导机械上各向异性骨组织的构建,并有望通过增强骨骼不同的诱导和方向来促进功能性骨骼再生 - 靶向骨组织的数量和质量。