摘要:提出一种新型交叉肋条微通道(MC-CR)热沉,使流体自旋转。针对100 w/cm 2 的热测试芯片(TTC),将交叉肋条微通道与矩形(MC-R)和水平肋条微通道(MC-HR)热沉进行了比较。结果表明:采用交叉肋条微通道后,热测试芯片的结温为336.49 K,压降为22 kPa。与矩形和水平肋条热沉相比,交叉肋条微通道的冷却能力分别提高了28.6%和14.3%,但压降增加了10.7倍和5.5倍。然后,研究了不同流速下微通道长宽比(λ)的影响,发现长宽比与冷却性能呈非线性关系。为降低压降,对横肋的倾角(α)和间距(S)进行了优化,当α=30°、S=0.1mm、λ=4时,压降由22kPa降至4.5kPa。另外,在相同压降条件下,分析了矩形、交错翅片(MC-SF)、交错肋片(MC-SR)及横肋微通道的散热性能,MC-CR仍具有优越的散热性能。
16 摘要 这是多阶段项目第一阶段进行的技术工作的最终报告,该项目的目标是设计、开发和飞行评估一种先进的复合材料尾翼部件,该部件在生产环境中制造,成本与金属部件相比具有竞争力,重量至少节省 20%。该项目选定的尾翼部件是 L-1011 飞机的垂直尾翼盒。箱体结构从机身生产接头延伸到翼尖肋,包括前后翼梁。对各种设计方案(如加固盖和夹层盖)进行了评估,以得出一种最有可能满足项目目标的配置。所选的首选配置包括带有模制整体加固翼梁的帽形加固盖、铝桁架复合材料肋条和带有整体模制盖的复合材料微型夹板腹板肋条。进行了材料筛选测试以选择先进的复合材料材料
- 在抵达行星之前,太空运输过程中的任何时间都可以部署进入 • ADEPT 开发专注于进入金星作为延伸目标。由于进入条件更温和(例如金属肋条、碳纤维织物层数更少),火星 EDL 的使用风险较低 • ADEPT 的碳纤维织物气动热能力允许更陡峭的火星进入轮廓(更高的加热),从而减少着陆分散足迹 • 低弹道系数设计可以消除高风险的 EDL 事件(例如超音速降落伞)
(1) 根据应用的特定设备隔离标准应用爬电距离和电气间隙要求。注意保持电路板设计的爬电距离和电气间隙,以确保印刷电路板上隔离器的安装垫不会减小此距离。在某些情况下,印刷电路板上的爬电距离和电气间隙会相等。在印刷电路板上插入凹槽、肋条或两者等技术可用于帮助提高这些规格。 (2) 在空气或油中进行测试,以确定隔离屏障的固有浪涌抗扰度。 (3) 视在电荷是由局部放电 (pd) 引起的放电。 (4) 屏障两侧的所有引脚连接在一起,形成一个双端子设备。
为追求轻量化,机身采用硬壳式结构设计,主翼采用半硬壳式结构。机翼前缘和后缘采用由多条肋条和纵梁组成的骨架结构,机翼表面采用贴有太阳能电池的树脂薄膜。为方便运输,机身可分为两部分,主翼可分为三部分,各连接部分采用插拔式保持结构,既保持了刚度又减轻了重量。从尾翼、发动机舱、起落架等主要部件到机载设备支架等小部件,最大限度地利用了复合材料,实现了轻量化。因此,复合材料结构总重量仅为设计的35公斤。太阳能飞机成功获取了各种数据,并证实了为通信卫星和高空飞机建立通信环境的可能性。主要优势
注:1. 爬电距离和电气间隙要求应根据具体应用的设备隔离标准来制定。应注意保持电路板设计的爬电距离和电气间隙,以确保印刷电路板上隔离器的安装垫不会减小此距离。在某些情况下,印刷电路板上的爬电距离和电气间隙会相等。在印刷电路板上插入凹槽和/或肋条等技术可用于帮助提高这些规格。2. 此耦合器仅适用于安全等级内的安全电气绝缘。应通过适当的保护电路确保符合安全等级。3. 在空气或油中进行测试,以确定隔离屏障的固有浪涌抗扰度。4. 视在电荷是由局部放电 (pd) 引起的放电。5. 屏障两侧的所有引脚连接在一起,形成一个双端子设备。
本文重点介绍集成在新型变形机翼应用的执行机构中的电动微型执行器的建模、仿真和控制。变形机翼是现有区域飞机机翼的一部分,其内部由翼梁、纵梁和肋条组成,结构刚度与真实飞机的刚度相似。机翼的上表面是柔性蒙皮,由复合材料制成,并经过优化以满足变形机翼项目要求。此外,机翼上还附有一个可控刚性副翼。执行机构的既定架构使用四个类似的微型执行器,固定在机翼内部并直接驱动机翼的柔性上表面。执行器是内部设计的,因为市场上没有可以直接安装在我们的变形机翼模型内的执行器。它由一个无刷直流 (BLDC) 电机、一个变速箱和一个螺旋桨组成,用于推动和拉动机翼的柔性上表面。电动机
(1) 根据应用的特定设备隔离标准应用爬电距离和间隙要求。必须小心保持电路板设计的爬电距离和间隙距离,以确保印刷电路板 (PCB) 上隔离器的安装垫不会减小此距离。在某些情况下,PCB 上的爬电距离和间隙会相等。在 PCB 上插入凹槽、肋条或两者等技术可用于帮助提高这些规格。 (2) 此耦合器仅适用于安全等级内的安全电气绝缘。应通过适当的保护电路确保符合安全等级。 (3) 在空气中进行测试以确定封装的浪涌抗扰度。 (4) 在油中进行测试以确定隔离屏障的固有浪涌抗扰度。 (5) 视在电荷是由局部放电 (pd) 引起的放电。 (6) 屏障两侧的所有引脚都绑在一起,形成一个双引脚设备。 (7) 在生产中使用方法 b1 或 b2。