摘要:特征提取是基于表面肌电(sEMG)模式识别的多功能假肢控制中最重要的步骤之一。本文提出了一种基于肌肉活跃区域的sEMG特征提取新方法。设计了一个实验,利用不同的特征对四种手部运动进行分类。该实验用于证明新特征具有更好的分类性能。实验结果表明,新特征活跃肌肉区域(AMR)比传统特征平均绝对值(MAV)、波形长度(WL)、零交叉(ZC)和斜率符号变化(SSC)具有更好的分类性能。AMR、MAV、WL、ZC和SSC的平均分类误差分别为13%、19%、26%、24%和22%。新的EMG特征基于手部运动和前臂活跃肌肉区域的映射关系。这种映射关系已经在医学中得到证实。通过新的特征提取算法从原始EMG信号中获得活跃肌肉区域数据。从该算法获得的结果可以很好地表示手部运动。另一方面,新特征向量大小比其他特征小很多,新特征可以降低计算成本,证明了AMR可以提高sEMG模式识别的准确率。
尽管智能假肢领域的技术进步最近取得了进步,但患者的排斥率仍然很高。这种拒绝的原因是多种多样的,从有限的功能和困惑界面到不适,大多数问题仅通过主观自我评估才能辨别。令人惊讶的是,缺乏特定的方法来衡量新的假体解决方案的优越性。必须深入研究操纵肌电假肢的复杂性,以理解用户面临的挑战并增强假肢配件和康复技术。这些障碍可能会导致被动用法或完全放弃假体装置。为了克服这些障碍,假肢领域不断寻求更复杂的技术来增强功能,用户友好性和设备寿命,并减少维护。这项研究对有关控制问题的文献进行了有条理的检查 反馈。
斯科特·加尔斯特空军研究实验室 俄亥俄州赖特-帕特森空军基地 面部肌电图 (fEMG) 是一种肌电图测量技术,主要用作测量情感的工具,但之前的实验表明,它也有助于量化认知工作量。在当前的研究中,实时监测了两个与任务无关的面部肌肉,皱眉肌和额外侧肌,以确定它们是否对遥控飞机 (RPA) 任务环境中的工作量变化敏感。应用实时信号处理技术从窗口 fEMG 数据中得出中值幅度和零交叉率。对这些特征的统计分析确定,这两种肌肉都对特定工作量操纵的变化很敏感。这项研究表明,从上述肌肉中提取的实时 fEMG 特征有可能作为或有助于认知工作量的指标。未来的工作旨在改进 fEMG 数据收集技术,以产生更灵敏、更具代表性的适合工作量评估的测量方法。长时间保持警惕的能力对于航空航天领域的许多职位来说都至关重要。例如,飞行员、传感器操作员和空中交通管制员必须保持高水平的态势感知,以确保最佳的安全和性能。认知工作量是决定操作员在防止危险后果所需水平上执行能力的重要因素 (Young & Stanton, 2002)。认知超负荷和负荷不足都会导致性能下降,而适度的认知唤醒有助于实现理想的性能能力 (Cohen, 2011)。为了减轻航空航天操作员的警觉负担并帮助他们保持理想的表现,开发了感知-评估-增强 (SAA) 框架,以识别和缓解各种任务环境中的认知工作量不平衡 (Galster & Johnson, 2013)。由于认知工作量的变化已被证明与各种生理事件相关,因此可以应用该框架来感知航空航天操作员产生的一系列生理指标,将这些指标纳入可以评估操作员认知状态的模型中,然后增强操作员的表现以减轻认知超负荷或负荷不足引起的绩效下降 (Wilson & Russell, 2007; Hoepf, Middendorf, Epling, & Galster, 2015; Hoepf et al., 2016)。用于评估工作量 (Hoepf et al., 2016)。为了使基于 SAA 的工作负荷建模方法能够在广泛的任务环境中发挥作用,必须将大量生理测量作为模型的输入。操作员执行的任务的性质可能决定了每种生理测量(皮质、心脏等)的有用性。例如,在心算类型的任务中,发现皮质测量与工作负荷有很好的关联,而心脏测量对主要需要使用仪器的飞行任务中的工作负荷很敏感,而眼部测量与高度依赖视觉的飞行任务中的工作负荷有关(Hankins & Wilson,1998)。许多心理生理学家和工程师正在研究各种生理测量与认知工作负荷之间的相关性,试图进一步提高实时模拟个人认知状态的能力。面部肌电图 (fEMG) 是最近被探索作为认知工作负荷潜在指标的生理信号之一。fEMG 是一种肌电图 (EMG) 测量技术,通过感应和放大产生的微小电脉冲来描述肌肉活动
面部肌电图 (fEMG) 是一种肌电图测量技术,主要用作测量情感的工具,但之前的实验表明,它也有潜力帮助量化认知工作量。在当前的研究中,实时监测了两个与任务无关的面部肌肉,皱眉肌和额外侧肌,以确定它们是否对遥控飞机 (RPA) 任务环境中的工作量变化敏感。应用实时信号处理技术从窗口 fEMG 数据中得出中值幅度和零交叉率。对这些特征的统计分析确定,这两块肌肉都对特定工作量操纵的变化很敏感。这项研究表明,从上述肌肉中提取的实时 fEMG 特征有可能作为或有助于认知工作量的指标。未来的工作旨在改进 fEMG 数据收集技术,以产生更灵敏、更具代表性的指标,适合工作量评估。长时间保持警惕的能力对航空航天领域的许多职位来说都至关重要。例如,飞行员、传感器操作员和空中交通管制员必须保持高度的态势感知能力,以确保最佳的安全和性能。认知工作量是决定操作员能否在防止危险后果所需的水平上工作的重要因素(Young & Stanton,2002 年)。认知超负荷和负荷不足都会导致绩效下降,而适度的认知唤醒水平则有助于实现理想的绩效能力(Cohen,2011 年)。
索引 1.前言 5 2.目的 9 3.评估甲状舌骨肌(TH)的肌电活动和超声评估静息状态下舌骨装置的位置,以及它们在赛马间歇性软腭背移(DDSP)发病机制中的可能作用 13 3.1 介绍 15 3.1.1 鼻咽 17 3.1.2 软腭背移(DDSP) 22 3.1.3 肌电图 30 3.1.4 喉舌骨区超声检查 33 3.2 材料和方法 36 3.3 结果 40 4.一般讨论 43 4.1 讨论 44 4.2 结论 48 4.3 参考文献 49 5.摘要 61 6.致谢 69