这项研究是由日本医学研究与开发机构(AMED)基因组医学实现生物库利用计划(基因组医学实现促进平台/先进的基因组研究与发展)“实现了用于心血管疾病的下一代精确医学,用于多种疾病,通过多组学链接(项目编号:JP18KM0405209)(KAZERSTAR REMOTISTION:KAREN ARGION KURINITION:KAREN)。研究与发展将基因组研究与药物发现和其他媒体联系在一起“通过数字组学中的心力衰竭和精确医学的压力反应机制(项目编号:JP23TM0524009)”(主要研究者:Seitaro nomura)疾病实践研究计划“通过全日扩张的心肌病基因组队列研究(项目编号:JP21EK0109543)开发基因组医学”(主要研究员:Seitaro Nomura)。 “(主要研究者:Seitaro nomura),“通过多摩学分析(项目编号:JP22EK0109487)中棘手的心血管疾病中的病理学和精确医学”(主要研究者:Kazunari Komuro) “(主要研究者:Kazunari Komuro),“日本循环研究协会的顽固性心血管疾病的证据(项目编号:JP24EK0109755)”(主要研究者:Kazunari Komuro) 600)“(主要研究者:satoshi kou)”,“心血管疾病中单细胞多词分层的实现(项目编号:JP23TM0724607)”(主要研究者:Satoshi Kou),“基于Spatioveral Genee spatiotal Genee的单细胞多摩学分层的实现, )(主要研究者:Kazunari Komuro),生命科学和药物发现研究支持平台计划(BIND)“对尖端单细胞OMICS和ESPISTRANSCRANSMOME分析的支持和复杂性(项目NO.:JP222AMA121016)”通过搜索整合表观基因组编辑和单细胞分析的种子(项目编号:JP22EK0210172)来进行心力衰竭心脏康复的开发模仿治疗(项目编号:JP24EK0210205)”(首席研究员:Seitaro Nomura),再生医学实现中心网络网络计划“心肌细胞针对性基因疗法和突变修复治疗”(主要研究员:Hiroyuki aburaya),Hiroyuki aburaya),)心脏病治疗的开发(项目编号:JP22BM1123011)(主要研究者:Seitaro Nomura),创新的高级研发支持计划“了解心脏DNA损害在人类心脏故障及其控制中的病理意义(项目编号:JP23GM4010020)通过建立基于大规模疾病同伙和学术合作的OMICS分析和监视系统(项目编号:JP2223FA627011)”(主要研究人员:Yuji Yamanashi),加剧新兴疾病的加剧。 (主要研究者:Katsuhiko Shirahige),科学研究的赠款,“在非分散细胞中,
乔纳森冬天1.2.3,山vress vousder 1.2,Biljana Ermanoska 1.2,Alice Montian,Ennaud Isapofe 4 7.8,John Palmio 9,Megan A. Walthrop 10.11,Alayne P. Meyer 10.12 smazer strab。 Cheryl Longman 15 , Catherine A. McWilliam 15 , Rotem Orbach 16 , Sumit Verma 17 , Regina Laine 16 , Carst 16 , Adriana Rebelo 19 , Tiffhan 19 , Tiffni 19 20 , Michael E. Shy 20 , Isabelle Maystadt 21,22 , Florence Demurger 23 , Anita Cairns 24 , Sarah Beecroft 25 , Chiara Folland 8 , Willem De Ridder 1,2,3,Gina Ravenscroft 8,GisèleBonne5,Bjaarne UDD 7.9,Jonathan Baets 1.2.3 1。超越,教师或医学和健康科学,大学或蚂蚁,蚂蚁,比利时; 2。 born-bunge,大学或蚂蚁学科的神经肌肉路线学实验室,比利时恩。 3。 比利时恩斯尼大学医院的部门或神经病学的神经肌肉参考中心; 4。 中心reférece,玛达什神经肌肉等方程,法国,hôpitalarmand trous,aphp,paist,paist,法国,法国,法国; 5。 索布斯大学,INSERM,肌病学院,法官和肌科,法国巴黎; 6。 中间是法国的玛达神经肌肉noromusculars Noromusculars Normusculars,hôpitalPité-Salpêterire,Institute the Myology,Aphp,Paist,Paist,Paist,French,French,French,French,French,French,French,法语; 7。 Folkhelesan Research Center,Helsinki,Finland and Medicum,University或Helsinki,Helsinki,芬兰赫尔辛基; 8。 ,美国哥伦布,俄亥俄州立大学; 14。超越,教师或医学和健康科学,大学或蚂蚁,蚂蚁,比利时; 2。born-bunge,大学或蚂蚁学科的神经肌肉路线学实验室,比利时恩。 3。比利时恩斯尼大学医院的部门或神经病学的神经肌肉参考中心; 4。中心reférece,玛达什神经肌肉等方程,法国,hôpitalarmand trous,aphp,paist,paist,法国,法国,法国; 5。索布斯大学,INSERM,肌病学院,法官和肌科,法国巴黎; 6。中间是法国的玛达神经肌肉noromusculars Noromusculars Normusculars,hôpitalPité-Salpêterire,Institute the Myology,Aphp,Paist,Paist,Paist,French,French,French,French,French,French,French,法语; 7。Folkhelesan Research Center,Helsinki,Finland and Medicum,University或Helsinki,Helsinki,芬兰赫尔辛基; 8。,美国哥伦布,俄亥俄州立大学; 14。,美国哥伦布,俄亥俄州立大学; 14。西澳大利亚大学医学研究中心,澳大利亚西澳大利亚州珀斯的哈里·珀金斯医学研究所; 9。 坦佩雷大学和芬兰坦佩雷大学医院坦佩雷神经肌肉中心; 10。 基因治疗中心,阿比盖尔·韦克斯纳研究所,美国俄亥俄州哥伦布市全国儿童医院; 11。 美国俄亥俄州俄亥俄州立大学韦克斯纳医学中心儿科和神经病学系; 12。 美国俄亥俄州哥伦布市全国儿童医院的遗传和基因组医学划分; 13。 约翰·沃尔顿(John Walton)肌营养不良研究中心,纽卡斯尔大学和纽卡斯尔医院NHS基金会信托基金会转化和临床研究所; 15。 西苏格兰西部遗传学服务,伊丽莎白大学医院,苏格兰格拉斯哥; 16。 美国国家卫生研究院,美国贝塞斯达国家卫生研究院,美国医学博士,美国国家神经系统疾病与中风研究所的儿童期神经肌肉和神经遗传疾病; 17。 美国佐治亚州亚特兰大埃默里大学医学院儿科和神经病学系; 18。 马萨诸塞州波士顿波士顿儿童医院神经病学系; 19。 John T. MacDonald基金会人类遗传学系和John P. Hussman人类基因组学研究所,迈阿密米勒大学医学院,迈阿密,佛罗里达州33136,美国; 20。 爱荷华大学Roy J和Lucille大学神经病学,美国爱荷华州爱荷华州的Carver College; 21。 deGénétiquehumaine中心,比利时Gosselies的Pathologie etdeGénétiqueInstitut; 22。西澳大利亚大学医学研究中心,澳大利亚西澳大利亚州珀斯的哈里·珀金斯医学研究所; 9。坦佩雷大学和芬兰坦佩雷大学医院坦佩雷神经肌肉中心; 10。基因治疗中心,阿比盖尔·韦克斯纳研究所,美国俄亥俄州哥伦布市全国儿童医院; 11。美国俄亥俄州俄亥俄州立大学韦克斯纳医学中心儿科和神经病学系; 12。美国俄亥俄州哥伦布市全国儿童医院的遗传和基因组医学划分; 13。约翰·沃尔顿(John Walton)肌营养不良研究中心,纽卡斯尔大学和纽卡斯尔医院NHS基金会信托基金会转化和临床研究所; 15。西苏格兰西部遗传学服务,伊丽莎白大学医院,苏格兰格拉斯哥; 16。美国国家卫生研究院,美国贝塞斯达国家卫生研究院,美国医学博士,美国国家神经系统疾病与中风研究所的儿童期神经肌肉和神经遗传疾病; 17。美国佐治亚州亚特兰大埃默里大学医学院儿科和神经病学系; 18。马萨诸塞州波士顿波士顿儿童医院神经病学系; 19。John T. MacDonald基金会人类遗传学系和John P. Hussman人类基因组学研究所,迈阿密米勒大学医学院,迈阿密,佛罗里达州33136,美国; 20。 爱荷华大学Roy J和Lucille大学神经病学,美国爱荷华州爱荷华州的Carver College; 21。 deGénétiquehumaine中心,比利时Gosselies的Pathologie etdeGénétiqueInstitut; 22。John T. MacDonald基金会人类遗传学系和John P. Hussman人类基因组学研究所,迈阿密米勒大学医学院,迈阿密,佛罗里达州33136,美国; 20。爱荷华大学Roy J和Lucille大学神经病学,美国爱荷华州爱荷华州的Carver College; 21。 deGénétiquehumaine中心,比利时Gosselies的Pathologie etdeGénétiqueInstitut; 22。神经病学,美国爱荷华州爱荷华州的Carver College; 21。deGénétiquehumaine中心,比利时Gosselies的Pathologie etdeGénétiqueInstitut; 22。Urphym,医学系,比利时纳穆尔,乌纳默尔; 23。deGénétique,Chba,Vannes,法国; 24。神经科学系,昆士兰儿童医院,澳大利亚昆士兰州布里斯班; 25。Pawsey Super Computing Research Center,澳大利亚华盛顿州肯辛顿市,通讯作者利益冲突教授。博士Jonathan Baets(jonathan.baets@uantwerpen.be)无
功能障碍。管理主要涉及提供服务,其中一小部分患者发展为心源性休克。4 TC的复发很少见,估计为1 E 6%,“超级复发”(定义为2 TC复发)异常罕见。5,6复发性TC的拟议的病理生理机制涉及调节胺激增,导致瞬时心肌收缩性和功能障碍。7 Kato等。 试图通过对1400名被诊断为TC的患者进行回顾性分析来确定与复发性TC相关的患者风险因素。 8有趣的是,糖尿病和高胆固醇血症在复发性TC的患者中更为普遍,而患有明显的心血管危险因素的糖尿病和胆固醇血症与复发性TC无关。 8在复发性TC的患者中,人们更频繁地观察到更频繁地观察到频率更高的频率,包括焦虑,癫痫发作,脑血管疾病和偏头痛。 8这项研究突出了与TC相关的重要风险因素。 8,7 Kato等。试图通过对1400名被诊断为TC的患者进行回顾性分析来确定与复发性TC相关的患者风险因素。8有趣的是,糖尿病和高胆固醇血症在复发性TC的患者中更为普遍,而患有明显的心血管危险因素的糖尿病和胆固醇血症与复发性TC无关。8在复发性TC的患者中,人们更频繁地观察到更频繁地观察到频率更高的频率,包括焦虑,癫痫发作,脑血管疾病和偏头痛。8这项研究突出了与TC相关的重要风险因素。8,
参考文献1。Lazo M,Clark JM。非酒精性脂肪肝病的流行病学:一种全球视角。Semin Liver Dis.2008; 28:339-50。2。Bajaj S,Nigam P,Luthra A等。一项关于胰岛素抵抗,代谢共同变化和预测评分的病例对照研究。印度J Med Res。2009; 129(3):285-292。 3。 Mohan V,Farooq S,Deepa M,Ravikumar R,Pitchumoni CS。 与不同等级的葡萄糖不耐症和代谢综合征有关的南印第安人非酒精脂肪肝病患病率。 糖尿病临床实践。 2009; 84(1):84-91。doi:10.1016/j.diabres.2008.11.039 4。 Romeo S,Kozlitina J,Xing C等。 PNPLA3中的遗传变异赋予对非酒精性脂肪肝病的敏感性。 nat Genet。 2008; 40(12):1461-1465。 doi:10.1038/ng.257 5。 Severson TJ,Bostur S,Bonkovsky HL。 影响非酒精性脂肪肝病的遗传因素:系统的临床综述。 世界J胃烯醇。 2016; 22(29):6742-6756。doi:10.3748/wjg.v22.i29.6742 6。 Kozlitina J,Smagris E,Stender S等。 外显域的关联研究确定了一种TM6SF2变体,该变体赋予了对非酒精性脂肪肝病的易感性。 nat Genet。 2014; 46(4):352-356。 doi:10.1038/ng.2901 7。 Oliveira Ain,Malta FM,Zitelli PMY,Salles APM,Gomes-Gouvea MS,Nastri ACS,Pinho JRR,Carrilho JRR,Carrilho FJ,Oliveira CP,Mendes-CorrêaMC,Pessoa MC,Pessoa MG,Mazo DF。 PMID:33622266; PMCID:PMC7901065。 8。2009; 129(3):285-292。3。Mohan V,Farooq S,Deepa M,Ravikumar R,Pitchumoni CS。与不同等级的葡萄糖不耐症和代谢综合征有关的南印第安人非酒精脂肪肝病患病率。糖尿病临床实践。2009; 84(1):84-91。doi:10.1016/j.diabres.2008.11.039 4。Romeo S,Kozlitina J,Xing C等。PNPLA3中的遗传变异赋予对非酒精性脂肪肝病的敏感性。nat Genet。2008; 40(12):1461-1465。 doi:10.1038/ng.257 5。 Severson TJ,Bostur S,Bonkovsky HL。 影响非酒精性脂肪肝病的遗传因素:系统的临床综述。 世界J胃烯醇。 2016; 22(29):6742-6756。doi:10.3748/wjg.v22.i29.6742 6。 Kozlitina J,Smagris E,Stender S等。 外显域的关联研究确定了一种TM6SF2变体,该变体赋予了对非酒精性脂肪肝病的易感性。 nat Genet。 2014; 46(4):352-356。 doi:10.1038/ng.2901 7。 Oliveira Ain,Malta FM,Zitelli PMY,Salles APM,Gomes-Gouvea MS,Nastri ACS,Pinho JRR,Carrilho JRR,Carrilho FJ,Oliveira CP,Mendes-CorrêaMC,Pessoa MC,Pessoa MG,Mazo DF。 PMID:33622266; PMCID:PMC7901065。 8。2008; 40(12):1461-1465。 doi:10.1038/ng.257 5。Severson TJ,Bostur S,Bonkovsky HL。影响非酒精性脂肪肝病的遗传因素:系统的临床综述。世界J胃烯醇。2016; 22(29):6742-6756。doi:10.3748/wjg.v22.i29.6742 6。Kozlitina J,Smagris E,Stender S等。外显域的关联研究确定了一种TM6SF2变体,该变体赋予了对非酒精性脂肪肝病的易感性。nat Genet。2014; 46(4):352-356。 doi:10.1038/ng.2901 7。 Oliveira Ain,Malta FM,Zitelli PMY,Salles APM,Gomes-Gouvea MS,Nastri ACS,Pinho JRR,Carrilho JRR,Carrilho FJ,Oliveira CP,Mendes-CorrêaMC,Pessoa MC,Pessoa MG,Mazo DF。 PMID:33622266; PMCID:PMC7901065。 8。2014; 46(4):352-356。 doi:10.1038/ng.2901 7。Oliveira Ain,Malta FM,Zitelli PMY,Salles APM,Gomes-Gouvea MS,Nastri ACS,Pinho JRR,Carrilho JRR,Carrilho FJ,Oliveira CP,Mendes-CorrêaMC,Pessoa MC,Pessoa MG,Mazo DF。PMID:33622266; PMCID:PMC7901065。8。PNPLA3和TM6SF2多态性在巴西慢性丙型肝炎患者中对肝纤维化和代谢异常的作用C. BMC胃肠道。2021 Feb 23; 21(1):81。 doi:10.1186/s12876-021-01654-3。SOOD V,Khanna R,Rawat D,Sharma S,Alam S,Sarin SK。研究小儿非酒精脂肪肝疾病中家庭聚类和PNPLA3基因多态性的研究。印度小儿科。2018年7月15日; 55(7):561-567。 pmid:30129536。 9。 Bhatt SP,Nigam P,Misra A,Guleria R,Pandey RM,Pasha MA。 含有非酒精性脂肪肝病的亚洲印第安人中含patatin样磷脂酶结构域蛋白3(PNPLA-3)基因的遗传变异。 Metab Syndr Relat疾病。 2013年10月; 11(5):329-35。 doi:10.1089/met.2012.0064。 EPUB 2013 JUN 4。 PMID:23734760。 10。 Koehler EM,Plompen EP,Schouten JN等。 糖尿病的存在和脂肪变性与一般人群中的肝脏僵硬有关:鹿特丹研究。 肝病学。 2016; 63(1):138-147。 doi:10.1002/hep.27981 11。 张L,You W,Zhang H,Peng R,Yao A,Li X等。 PNPLA3多态性(RS738409)和非酒精性脂肪肝病风险和相关表型:荟萃分析。 J胃肠肝素。 2015; doi:10.1111/jgh.12889 12。 Anstee QM,Day CP。 NAFLD的遗传学。 nat Rev Gastroenterol Hepatol。 2013; 10:645–655。 doi:10.1038/nrgastro.2013.182 PMID:24061205 13。 Shen JH,Li YL,Li D,Wang NN,Jing L,Huang YH。 J脂质res。2018年7月15日; 55(7):561-567。pmid:30129536。9。Bhatt SP,Nigam P,Misra A,Guleria R,Pandey RM,Pasha MA。 含有非酒精性脂肪肝病的亚洲印第安人中含patatin样磷脂酶结构域蛋白3(PNPLA-3)基因的遗传变异。 Metab Syndr Relat疾病。 2013年10月; 11(5):329-35。 doi:10.1089/met.2012.0064。 EPUB 2013 JUN 4。 PMID:23734760。 10。 Koehler EM,Plompen EP,Schouten JN等。 糖尿病的存在和脂肪变性与一般人群中的肝脏僵硬有关:鹿特丹研究。 肝病学。 2016; 63(1):138-147。 doi:10.1002/hep.27981 11。 张L,You W,Zhang H,Peng R,Yao A,Li X等。 PNPLA3多态性(RS738409)和非酒精性脂肪肝病风险和相关表型:荟萃分析。 J胃肠肝素。 2015; doi:10.1111/jgh.12889 12。 Anstee QM,Day CP。 NAFLD的遗传学。 nat Rev Gastroenterol Hepatol。 2013; 10:645–655。 doi:10.1038/nrgastro.2013.182 PMID:24061205 13。 Shen JH,Li YL,Li D,Wang NN,Jing L,Huang YH。 J脂质res。Bhatt SP,Nigam P,Misra A,Guleria R,Pandey RM,Pasha MA。含有非酒精性脂肪肝病的亚洲印第安人中含patatin样磷脂酶结构域蛋白3(PNPLA-3)基因的遗传变异。Metab Syndr Relat疾病。2013年10月; 11(5):329-35。 doi:10.1089/met.2012.0064。EPUB 2013 JUN 4。 PMID:23734760。 10。 Koehler EM,Plompen EP,Schouten JN等。 糖尿病的存在和脂肪变性与一般人群中的肝脏僵硬有关:鹿特丹研究。 肝病学。 2016; 63(1):138-147。 doi:10.1002/hep.27981 11。 张L,You W,Zhang H,Peng R,Yao A,Li X等。 PNPLA3多态性(RS738409)和非酒精性脂肪肝病风险和相关表型:荟萃分析。 J胃肠肝素。 2015; doi:10.1111/jgh.12889 12。 Anstee QM,Day CP。 NAFLD的遗传学。 nat Rev Gastroenterol Hepatol。 2013; 10:645–655。 doi:10.1038/nrgastro.2013.182 PMID:24061205 13。 Shen JH,Li YL,Li D,Wang NN,Jing L,Huang YH。 J脂质res。EPUB 2013 JUN 4。PMID:23734760。10。Koehler EM,Plompen EP,Schouten JN等。糖尿病的存在和脂肪变性与一般人群中的肝脏僵硬有关:鹿特丹研究。肝病学。2016; 63(1):138-147。 doi:10.1002/hep.27981 11。 张L,You W,Zhang H,Peng R,Yao A,Li X等。 PNPLA3多态性(RS738409)和非酒精性脂肪肝病风险和相关表型:荟萃分析。 J胃肠肝素。 2015; doi:10.1111/jgh.12889 12。 Anstee QM,Day CP。 NAFLD的遗传学。 nat Rev Gastroenterol Hepatol。 2013; 10:645–655。 doi:10.1038/nrgastro.2013.182 PMID:24061205 13。 Shen JH,Li YL,Li D,Wang NN,Jing L,Huang YH。 J脂质res。2016; 63(1):138-147。 doi:10.1002/hep.27981 11。张L,You W,Zhang H,Peng R,Yao A,Li X等。PNPLA3多态性(RS738409)和非酒精性脂肪肝病风险和相关表型:荟萃分析。J胃肠肝素。2015; doi:10.1111/jgh.12889 12。Anstee QM,Day CP。NAFLD的遗传学。nat Rev Gastroenterol Hepatol。2013; 10:645–655。doi:10.1038/nrgastro.2013.182 PMID:24061205 13。Shen JH,Li YL,Li D,Wang NN,Jing L,Huang YH。 J脂质res。Shen JH,Li YL,Li D,Wang NN,Jing L,Huang YH。J脂质res。PNPLA3基因和肝硬化的RS738409(I148M)变体:荟萃分析。2015; 56:167–175。doi:10.1194/jlr.m048777 pmid:25378656 14。Singal AG,Manjunath H,Yopp AC,Beg MS,Marrero JA,Gopal P等。PNPLA3对肝细胞癌纤维化进展和发育的影响:一种元分析。Am J胃肠道。2014; 109:325–334。doi:10.1038/ajg.2013.476 PMID:24445574 15。Shen J,Wong GL,Chan HL,Chan Hy,Yeung DK,Chan RS等。pNPLA3基因多态性在没有代谢的社区受试者中说明了脂肪肝
肥厚性心肌病 (HCM) 因其异质性表型和临床病程而具有复杂的诊断和预后挑战。人工智能 (AI) 和机器学习 (ML) 技术有望改变心电图 (ECG) 在 HCM 诊断、预后和管理中的作用。人工智能(包括深度学习 (DL))使计算机能够从数据中学习模式,从而开发出能够分析心电图信号的模型。卷积神经网络等 DL 模型在准确识别心电图中与 HCM 相关的异常方面表现出了良好的前景,超越了传统的诊断方法。在诊断 HCM 时,ML 模型在区分 HCM 和其他心脏病方面表现出很高的准确性,即使在心电图结果正常的情况下也是如此。此外,人工智能模型通过预测导致心脏猝死的心律失常事件和识别有心房颤动和心力衰竭风险的患者,增强了风险评估。这些模型结合了临床和影像数据,提供了对患者风险状况的全面评估。挑战依然存在,包括需要更大、更多样化的数据集来提高模型的通用性并解决罕见事件预测中固有的不平衡问题。尽管如此,人工智能驱动的方法有可能通过根据个体患者风险状况提供及时准确的诊断、预后和个性化治疗策略来彻底改变 HCM 管理。本综述探讨了人工智能在 HCM 心电图分析中的当前应用前景,重点关注人工智能方法的进步及其在 HCM 护理中的具体应用。© 2024 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
肝硬化心肌病(CMC)是与肝硬化有关的心脏病,其特征是亚临床心脏功能障碍,包括舒张期和收缩症。尽管患者的静息心功能正常,但CMC在心血管应激(例如感染,手术或肝移植)的情况下表现出来。所涉及的主要机制是催眠药循环,心输出量增加和全身性血管舒张,随着时间的流逝,心脏超负荷并降低了其适当响应需求的能力。CMC流行病学表明,它影响了超过50%的晚期肝硬化患者,尤其是患有门户高血压和腹水的患者。诸如糖尿病和高血压等合并症之类的因素也会影响其患病率。诊断具有挑战性,通常由超声心动图和BNP和NT-ProBNP等生物标志物进行。高级方法,例如组织多普勒和斑点跟踪,可以识别亚临床心脏功能障碍。CMC治疗涉及心脏功能和肝硬化的谨慎管理。β受体阻滞剂和利尿剂通常使用,但由于加剧心脏功能障碍的风险,应仔细给药。肝移植可以改善CMC患者的心脏功能,但是在这些情况下,移植后死亡率仍然很高。研究进步包括开发细胞和基因疗法,这些细胞和基因疗法的发展是恢复心脏功能的,以及新的生物标志物来监测疾病进展。cmc是一种未经诊断的疾病,其早期识别对于改善临床结果至关重要,尤其是在患者肝移植的患者中。关键词:心肌病,肝肝硬化,心室功能障碍,超声心动图,肝移植
1。Wang Ch和Al。 J儿童Neurol 2012; 27(3):363-382。 2。 北kn和al。 疾病神经术 2014; 24:97-1 3。 kg claeys。 Dev Med Child Neurol 2020; 62(3):297-3 4。 黄k和al。 Neurol Front 2021; 12:761636。 5。 cassandrini d和al。 Ital J Pediatrates 2017; 43(1):101。Wang Ch和Al。J儿童Neurol2012; 27(3):363-382。2。北kn和al。疾病神经术2014; 24:97-13。kg claeys。Dev Med Child Neurol2020; 62(3):297-34。黄k和al。Neurol Front2021; 12:761636。5。cassandrini d和al。Ital J Pediatrates2017; 43(1):101。2017; 43(1):101。
摘要:客观心房颤动(AF)是心动过速诱导的心肌病(TIC)的最常见原因。但是,AF患者容易发育,尚不清楚。在这项研究中,我们研究了AF患者的临床特征。方法这项单中心研究包括722例AF患者(平均年龄为63.1±10.2岁; 191名女性),他们接受了射频导管消融。,我们将TIC定义为成功消融后LVEF的初始左心室发射分数(LVEF),LVEF的回收率> 20%,并比较了TIC和对照组之间的临床特征。结果2型糖尿病的比例(30.5%vs. 14.7%),肾功能障碍(34.2%vs. 23.8%),超张力(67.1%vs. 54.8%)和持续的AF(62.2%vs. 32.2%)在TIC组中比(62.2%vs. 32.2%)在TIC组中(N = 82)(N = 82)(n = 82)。在TIC组中,室内鼻腔淋巴结有效期(AVNERP)(AVNERP)(303±72 ms vs. 332±86 ms; p = 0.017)的比对照组明显短。多变量分析发现持续的AF [赔率比(OR),3.19; 95%置信区间(CI),1.94- 5.24],肾功能障碍(OR,1.87; 95%CI,1.06-3.32)和2型糖尿病(OR,2.30; 95%CI,1.31-4.05)与TIC显着相关。结论合并肾功能障碍和2型糖尿病是AF患者的临床特征。持续的AF,而短暂的Avnerp可能参与了TIC的发展。
扩张型心肌病 (DCM) 是一种常见的心肌病,其特征是心室扩张和收缩功能障碍,在没有冠状动脉疾病、动脉高血压、瓣膜或先天性疾病的情况下。DCM 是由遗传因素、环境因素或两者结合引起的一组异质性心肌疾病。DCM 主要影响 20 至 50 岁之间的男性,被认为是心力衰竭 (HF) 的主要原因之一和心脏移植的主要指征。基于指南的 HF 治疗是 DCM 患者管理的主要手段。近年来,基因治疗和诱导多能干细胞已成为有前途的策略。在本综述中,我们总结了 DCM 患者的相关临床问题和当前治疗,包括基因评估的作用。
•HCM是最常见的遗传性心脏疾病。•通常以常染色体优势模式继承,但不需要HCM的家族史。•许多人不知道自己拥有它或携带遗传易感性。•HCM可以以不同程度的严重程度显示出大不相同的表现,即使在同一家族的成员中也是如此。•某些HCM的情况是非孟德尔式的,可能是由多基因风险等位基因和非遗传因素(例如老年,高血压,代谢综合征和肥胖症)组合而产生的。•人们在休息时可能是非刺激性的,但会因运动而变得阻碍性,因此,作为常规评估的一部分,患者进行运动压力超声心动图很重要。•有各种表型和结构性亚型可以为遗传风险和治疗提供依据。•儿童和成人患者之间的SCD风险分层存在重要差异。