Dr Richard Collier (Centre for Advancing Practice, Health Education England), Primary Care Deans, NHSE and NHSE/I, CQC, ARMA, HCPC, RCGP, Chartered Society of Physiotherapy, Royal Collage of Occupational Therapy, College of Podiatry, College of Paramedics, Institute of Osteopathy, MSK Partnership group, Musculoskeletal Association of Chartered物理治疗师,肌肉骨骼医学学会,IFOMPT,高级实践物理疗法协会,英国饮食协会,国家首次接触工作组,初级保健网络代表,护理和助产士委员会,英格兰公共卫生,初级保健风湿病学和肌肉骨骼医学协会,健康,MSK Health,MSK Health,MSK Reformition time Instuction timection,以及各种教育的技能,以及各种教育,以及各种各样的班级,以及各种工作。
•ft 17-通过肌肉转录组分析部分和完整的层粘连蛋白 - α2缺乏症的患者的肌肉转录组分析,表征LAMA2-RD分子病理机制和新型疾病生物标志物。
摘要:气管肿瘤虽然很常见,但在成年人中通常是恶性的。手术去除是非转移性肺部恶性肿瘤的主要疗法,但只有一小部分非小细胞肺癌患者才有可能受到肿瘤的数量和位置以及患者的整体健康状况的限制。本研究提出了另一种治疗方法:使用肺泡导管通过肺部路线施用雾化化学治疗颗粒,以靶向肺部肿瘤。为了提高对病变的递送效率,必须了解局部药物沉积和粒子转运动力学。本研究使用经过实验验证的计算流体颗粒动力学(CFPD)模型来模拟在具有10代(G)的3二维气管机关树中吸入化学治疗颗粒的传输和沉积。基于颗粒释放图,提出了有针对性的药物输送策略,以增强G10中两个肺部肿瘤部位的颗粒沉积。结果表明,受控药物释放可以改善两个目标区域的颗粒递送效率。使用气管导管的使用显着影响靶向肿瘤的颗粒递送效率。参数分析表明,使用较小的导管可以根据肿瘤的位置和所使用的导管直径的位置将超过74%的颗粒传递到靶向肿瘤部位,而使用常规颗粒给药方法少于1%。此外,结果表明颗粒释放时间对粒子沉积在同一吸入率中具有显着影响。这项研究是理解导管直径对局部气管注射对靶向小肺气道靶向肿瘤的第一个步骤。
果蝇肌生成抑制剂他的基因是成人肌肉功能和肌肉干细胞维护的essen0al,Robert Mitchell-Gee*1,Robert Hoff*2,Robert Hoff*2,Kumar Vishal2,3,Daniel Hancock1,Daniel Hancock1,Sam McKitrick4,Sam McKitrick4,Cristina newnes newnes newnes-quipperjeta1,tyna and crippation and tyanna l.lovator richana l.lovator,richanna l.lova。 taylor1+ 1。生物科学学院,加的夫大学,加的夫,CF10 3AX,英国。2。圣地亚哥州立大学生物学系,圣地亚哥,加利福尼亚州92182,美国3。圣何塞州立大学生物科学系,圣何塞,加利福尼亚州95192,美国4。 新墨西哥大学的生物学系,美国新墨西哥州87131,美国 *这些作者同样贡献了 +通讯作者:taylormv@cardiff.ac.uk摘要脊椎动物肌肉纤维的群群群群肌肉干细胞(Muscs),或“卫星细胞),或“卫星细胞”,对肌肉的增长,可容纳肌肉,可容纳和修复。 在果蝇中,直到最近才描述了具有相似特征的成年MUSC。 这打开了果蝇系统,用于分析MUSC在肌肉维护,修复和衰老中的运作方式。 在这里,我们表明HIM基因在成年肌肉祖细胞(AMP)或成肌细胞中表达,这使成年果蝇胸腔飞行和跳跃肌肉表达。 值得注意的是,我们还表明,他在飞行肌肉中表达了他,将他识别为这些昆虫MUSC的第二个遗传标记。 然后我们探索了他的功能。 他的突变体破坏了胸跳肌肉的组织,导致跳跃能力降低。 他的突变体还减少了成肌细胞的池,会发展为飞行肌肉。 2015; Laurichesse and Soler 2020)。圣何塞州立大学生物科学系,圣何塞,加利福尼亚州95192,美国4。新墨西哥大学的生物学系,美国新墨西哥州87131,美国 *这些作者同样贡献了 +通讯作者:taylormv@cardiff.ac.uk摘要脊椎动物肌肉纤维的群群群群肌肉干细胞(Muscs),或“卫星细胞),或“卫星细胞”,对肌肉的增长,可容纳肌肉,可容纳和修复。 在果蝇中,直到最近才描述了具有相似特征的成年MUSC。 这打开了果蝇系统,用于分析MUSC在肌肉维护,修复和衰老中的运作方式。 在这里,我们表明HIM基因在成年肌肉祖细胞(AMP)或成肌细胞中表达,这使成年果蝇胸腔飞行和跳跃肌肉表达。 值得注意的是,我们还表明,他在飞行肌肉中表达了他,将他识别为这些昆虫MUSC的第二个遗传标记。 然后我们探索了他的功能。 他的突变体破坏了胸跳肌肉的组织,导致跳跃能力降低。 他的突变体还减少了成肌细胞的池,会发展为飞行肌肉。 2015; Laurichesse and Soler 2020)。新墨西哥大学的生物学系,美国新墨西哥州87131,美国 *这些作者同样贡献了 +通讯作者:taylormv@cardiff.ac.uk摘要脊椎动物肌肉纤维的群群群群肌肉干细胞(Muscs),或“卫星细胞),或“卫星细胞”,对肌肉的增长,可容纳肌肉,可容纳和修复。在果蝇中,直到最近才描述了具有相似特征的成年MUSC。这打开了果蝇系统,用于分析MUSC在肌肉维护,修复和衰老中的运作方式。在这里,我们表明HIM基因在成年肌肉祖细胞(AMP)或成肌细胞中表达,这使成年果蝇胸腔飞行和跳跃肌肉表达。值得注意的是,我们还表明,他在飞行肌肉中表达了他,将他识别为这些昆虫MUSC的第二个遗传标记。然后我们探索了他的功能。他的突变体破坏了胸跳肌肉的组织,导致跳跃能力降低。他的突变体还减少了成肌细胞的池,会发展为飞行肌肉。2015; Laurichesse and Soler 2020)。在飞行肌肉本身中,他的突变体的MUSC数量依赖于年龄,这表明他是维持成年肌肉干细胞种群所必需的。此外,MUSC的这种下降与功能效应相吻合:飞行能力的年龄下降。总的来说,他是果蝇成人MUSC的新颖标志,并且在老化过程中需要保持MUSC数量和飞行能力。介绍。在水果中,果蝇果蝇已证明了研究人员探索肌肉发育的遗传和细胞基础的宝贵模型(Dobi等人在发育过程中,果蝇经历了两波骨骼肌肌发生。胚胎发生过程中的第一个引起了使用ungl pupagon的幼虫肌肉。第二波在普帕奇(Pupagon)期间形成了在成年型中发现的各种肌肉,这些肌肉持续了两个到三个月。不同的成年肌肉是由成年肌肉祖细胞(AMP)引起的,这是一种干细胞populagon,在胚胎发生过程中被放在一边,然后在幼虫寿命中增殖。成年肌肉包括由机翼圆盘AMP形成的胸间间接肌(IFMS)和跳跃肌肉(也称为TDT,TDT,TREGAL的to骨抑制剂),这些肌肉是由与T2间胸乳清盘(Jaramillo et e e2009)。
摘要。肌肉减少症是骨骼肌的进行性和普遍损失,与衰老相关的功能目前没有明确的治疗。肠道微生物组成的改变已成为多种疾病病理生理学的重要原因。最近,它与肌肉健康的关联指出了其在介导肌肉减少症中的潜在作用。当前的综述着重于肠道微生物群和肌肉健康的介体的关联,将肠道微生物群的影响与其代谢物对肌肉减少症生物标志物的影响联系起来。它进一步描述了肠道微生物群会随着年龄的发展影响肌肉健康的机制,从而有助于制定涉及营养补充剂和药理干预措施以及审查中汇编的生活方式的多模式治疗计划。营养补充剂含有蛋白质,维生素D,omega-3脂肪酸,肌酸,姜黄素,开菲尔和ursolic酸,对肠道微生物组有积极影响。饮食纤维为有益微生物的生长,例如双歧杆菌,粪便核酸杆菌,Ruminococcus和Lactobacillus增长。益生菌和益生元通过预防活性氧(ROS)和炎症细胞因子。它们还增加了肠道菌群代谢产物(如短链脂肪酸(SCFA))的产生,有助于改善肌肉健康。富含多酚的食物具有抗炎作用,具有抗氧化作用,有助于更健康的肠道。药理学干预措施,例如粪便微生物群移植(FMT),非甾体类抗炎药(NSAIDS),生长素蛋白模拟物,血管紧张素转化
Ekaterina Vert-Wong首席执行官Nostopharma LLC采访:Lynn Fosse,高级编辑CEOCFO杂志Ceocfo:Vert-Wong女士,Nostopharma背后的愿景是什么?Vert Wong女士:Nostopharma背后的视野是在创伤或严重手术后开发一种新的医学范式来康复。我们正在开发一个治疗平台,该平台将帮助人们恢复并恢复全部功能。对此类疗法非常需要手术后的患者,甚至患有长期疾病或自身免疫性炎症。ceocfo:今天有什么问题?Vert Wong女士:需要肌肉骨骼健康恢复的患者没有太多可用。没有治疗平台可以使它们免于副作用,并允许他们以受控的方式,何时何地进行康复医学。这就是Nostopharma会发展的;这将是一种当地的组织治疗,只能照顾创伤部位的组织。ceocfo:特定目标是不寻常的吗?Vert-Wong女士:这是不寻常的。主流疗法试图完成向整个身体的分娩,以确保患者获得足够的药物以查看功效。它已经工作了数十年,但是我们的纳米级传递方法将改变这种范式。在Nostopharma,我们致力于将药物控制给医疗保健提供者和患者。我们的目标是再生组织,身体的其余部分无需看到药物即可避免副作用。我们是患者对他们如何服用药物以及他们康复的速度的控制范式中的开拓者。患者及其医生将能够合作定义CEOCFO治疗过程:我们在开发过程中在哪里?Vert Wong女士:Nostopharma是一家临床前阶段的公司,我们开发了第一个解决病态状况,肌肉和结缔组织病理骨骼生长的发展的治疗候选者。我们已经开发了数据,以表明该概念在临床前模型中是安全有效的。我们正处于我们正在扩大制造业并收集所有监管数据集的阶段,以与监管机构共享,以寻求我们的首次人类临床试验的批准。Nostopharma LLC采访继续在第3页。
对未来的一般建议 患有小型室间隔缺损的儿童可以过上正常的活跃生活,包括各种运动。所有患有室间隔缺损的儿童都有心脏感染的风险(称为心内膜炎)。这种感染可能是由牙齿或牙龈感染引起的。照顾好孩子的牙齿并定期看牙医(每 6-12 个月一次)很重要。最好避免穿耳洞或纹身,因为它们也存在轻微的感染风险,可能会扩散到心脏。如果室间隔缺损自行闭合,这些预防措施就不再必要了。有关心内膜炎的更多信息,请参见以下链接:
用于中风后运动康复的脑机接口 (BCI) 系统已证明其通过加强与运动相关的大脑活动来促进上肢运动恢复的有效性。混合 BCI (h-BCI) 利用中枢和外周激活,常用于辅助 BCI 以提高分类性能。然而,在康复环境中,应提取大脑和肌肉特征以促进良好的运动结果,不仅加强中枢运动系统中的意志控制,而且还加强将运动命令有效投射到目标肌肉,即中枢到外周的通信。出于这个原因,我们考虑将皮质肌肉耦合 (CMC) 作为专用于中风后上肢运动康复的 h-BCI 的一个功能。在本研究中,我们对 13 名健康参与者 (CTRL) 和 12 名中风患者 (EXP) 在执行(CTRL,EXP 未受影响的手臂)和尝试(EXP 受影响的手臂)手抓握和伸展时进行了伪在线分析,以优化 CMC 计算和基于 CMC 的运动检测从离线到在线的转换。结果表明,每 125 毫秒更新一次 CMC 计算(滑动窗口的移位)并在最终分类决策之前积累两个预测是运动分类准确性和速度之间的最佳平衡,与运动类型无关。对中风参与者的伪在线分析表明,尝试和执行的抓握/伸展都可以通过基于 CMC 的运动检测进行分类,并且在分类速度方面具有很高的性能(运动检测到 EMG 开始之间的平均延迟约为 580 毫秒)
通过比较基因组学分析在10种亚米胺类物种中鉴定出参与霉菌修复的基因,并选择了一组白rot basidiomycota(14)和软 - comcomycota(12)种,以确定矩阵的独特生物修复能力。使用系统发育主成分分析(PPCA)探索了基因组,搜索已经记录在生物催化/生物降解数据库中的基因。结果强调了甲藻类中芳香族基因/酶的明显,增加的潜力,尤其强调了高拷贝数和苯甲酸酯4-单一加仑酶[EC:1.14.14.14.92]同源物的不同光谱。此外,与其他白rot基体菌菌相比,在亚无菌素中涉及降解的其他酶更丰富,而参与多环芳族芳族芳族芳族氢碳(PAHS)的降解的酶在Armillariots和其他白色杂物中更为易于量。曲霉和北极曲霉的转录组填充物证实,在木材菌丝菌根中涉及苯甲酸酯和其他单核细胞芳香族降解的几个基因在木材含量的真菌菌丝体中明显地表达。数据与甲藻类物种一致,在降解芳香剂方面具有更强大的潜力。我们的结果提供了一种可靠,实用的解决方案,用于筛选可能的真菌候选者,以根据其基因组学数据的全部生物降解潜力,适用性和可能的专业化。
1。简介:用于执法目的的FRT概述,通过人工智能(AI)算法的发展促进了广泛的生物识别数据分析的自动化,这导致在各种工业中广泛使用面部识别技术(FRT)。执法机构(LEA)由于其作为公共监视工具的有效性而越来越吸引FRT。然而,在许多个人权利中,它尤其构成侵犯个人隐私的风险。几项研究(Eneman等,2022; Smith&Miller,2021)认为,如今的隐私术语通常被定义为控制有关自己信息的权利。在这种情况下,可以无需身体入侵即使没有个人知识,就可以收集面部图像,从而在知情同意和隐私方面造成其他问题(Raposo,2022)。