典型的肌肉由数千条并行工作的肌纤维组成,这些肌纤维被组织成较少数量的运动单位。运动单位由运动神经元及其所支配的肌纤维组成,这里用运动神经元 A1 表示。支配一块肌肉的运动神经元通常聚集在一个细长的运动核中,该运动核可能延伸到脊髓腹侧的一到四个节段。运动核的轴突通过几条腹根和周围神经离开脊髓,但被收集到靠近目标肌肉的一个神经束中。在图中,运动核 A 包括支配肌肉 A 的所有运动神经元;同样,运动核 B 包括支配肌肉 B 的所有运动神经元。每个运动神经元(图中未显示)的广泛分支的树突往往与来自其他核的运动神经元的树突混合在一起。
肌肉骨骼感染(MSI),包括人造关节感染(PJI)和与骨折相关感染(FRI),在现代创伤和骨科手术中仍然是毁灭性的并发症,具有重大的财务和心理成本,并具有严重的财务和心理成本,并增加了发病率(1,2)。PJI包含一系列感染,发生在不同的位置(例如髋关节,膝盖和肩膀)以及不同类型的假体(一线假体或修订假体,包括铰接假体,切除假体,假体 - 关节固定术和股骨全部)(3)。对于PJI患者,有必要避免死前的临床情况,因为经济截肢或髋关节脱落与灾难性功能结果有关。fri可以包括手术和非手术治疗的骨折。对于严重合并症或相关骨缺损的FRI患者中,大约3–17%,截肢是唯一的选择(4)。虽然大多数中心的PJI发生率在0.5%至2%之间(3,5),但周五的发病率从1%到30%,取决于损伤的严重程度(6)。鉴于人口老龄化,脆弱性骨折的数量越来越多,关节置换手术的增加,预计MSI的发生率只会在接下来的几年中增加(3)。与不发展这种并发症的患者相比,这些感染通常会导致功能障碍,活动能力有限和更高的死亡率,从而对患者和医疗保健系统造成严重负担(3,6)。管理概念由联合手术和抗生素治疗方法组成。由于这些感染与生物膜相关,因此治疗通常需要进行多次修订手术。这不仅是昂贵的,而且需要大量的时间和资源,与不开发星期五的患者相比,周五患者的医疗费用高达七倍(7)。
肌肉减少症是与年龄相关的骨骼肌质量和力量的非自愿丧失。阿尔茨海默氏病(AD)是老年人痴呆的最常见原因。迄今为止,没有针对肌肉减少症和AD的效率治疗方法。身体和认知障碍是老年人口中残疾的两个主要原因,这严重降低了生活质量并增加了经济负担。在临床上,肌肉减少症与AD密切相关。但是,该关联的基本因素仍然未知。关于肌肉的机理研究 - 认知障碍期间的脑串扰可能会阐明新见解和新型治疗方法,以打击认知能力下降和AD。在这篇综述中,我们总结了最新的研究,该研究强调了肌肉减少症与认知障碍之间的关联。讨论了肌肉涉及的潜在机制 - 脑串扰和这种串扰的潜在影响。最后,还探索了药物开发的未来方向,以改善与年龄相关的认知障碍和与广告相关的认知功能障碍。
抽象目标。这项研究的主要目的是研究皮质肌肉,皮质内和肌间耦合。在此,我们建立了一个Cortico-Muscular功能网络(CMFN),以评估与制作拳头,张开手和手腕屈曲相关的网络差异。方法。我们使用转移熵(TE)来计算脑电图和肌电图数据之间的因果关系,并建立了TE连接矩阵。然后,我们应用了图理论来分析CMFN的聚类系数,全局效率和小世界属性。我们还使用hulief-f来提取beta2频段的TE连接矩阵的特征,以进行不同的手动运动,并在使用此功能进行动作识别时观察到高精度。主要结果。我们发现,Beta频段中三个动作的CMFN具有小世界属性,其中Beta2频段的小世界更强大。此外,我们发现提取的特征主要集中在左额叶区域,左运动区域,枕叶和相关肌肉中,这表明CMFN可用于评估与不同手动运动相关的皮层和肌肉之间的耦合差异。总体而言,我们的结果表明,Beta2(21-35 Hz)波是皮质和肌肉之间的主要信息载体,并且可以在Beta2频段中使用CMFN来评估皮质肌肉耦合。意义。我们的研究初步探讨了与手动运动相关的CMFN,提供了有关皮质和肌肉之间信息传播的其他见解,从而为中风患者的病理学皮质区域奠定了基础。
使用成簇的规律间隔短回文重复序列 (CRISPR) 系统在核苷酸水平上编辑 DNA 的能力是一种相对较新的研究工具,它正在彻底改变人类健康和疾病(包括骨科疾病)许多方面的分析。CRISPR 是从细菌防御系统改编而来,用于哺乳动物细胞基因组编辑,已被证明是一种灵活、可编程、可扩展且易于使用的基因编辑工具。最近的改进通过设计 CRISPR 系统的特定元素、发现新的天然 CRISPR 分子以及使 CRISPR 超越基因编辑到调节基因转录和操纵 RNA 的修改,提高了 CRISPR 的功能。本文将回顾 CRISPR 基因组编辑的基础知识,包括它如何改变分子肌肉骨骼研究的某些方面的描述,并将通过推测 CRISPR 相关治疗和疗法在临床骨科实践中的应用前景来结束。
摘要 目的。体机接口 (BoMI) 建立了一种操作各种设备的方法,让用户能够利用脊髓损伤或中风后仍可用的肌肉和运动冗余来扩展其运动能力的极限。在这里,我们考虑了两种信号的整合,即来自惯性测量单元 (IMU) 的运动信号和用肌电图 (EMG) 记录的肌肉活动,这两种信号都有助于 BoMI 的运行。方法。由于 IMU 和 EMG 信号的性质不同,直接组合它们可能会导致控制效率低下。因此,我们使用基于非线性回归的方法从 EMG 信号预测 IMU,然后将预测和实际 IMU 信号组合成混合控制信号。这种方法的目标是为用户提供在运动和 EMG 控制之间无缝切换的可能性,使用 BoMI 作为促进选定肌肉参与的工具。我们在 15 名未受损参与者的队列中以三种控制模式(仅 EMG、仅 IMU 和混合)测试了界面。参与者通过引导计算机光标经过一组目标来练习伸手动作。主要结果。我们发现,所提出的混合控制可实现与基于 IMU 的控制相当的性能,并且明显优于仅使用 EMG 的控制。结果还表明,混合光标控制主要受 EMG 信号的影响。意义。我们得出结论,将 EMG 与 IMU 信号相结合可能是针对肌肉激活的有效方法,同时克服了仅使用 EMG 的控制的局限性。
有许多基因治疗方式,但共同特征是将某些遗传物质递送到细胞中以纠正,修饰或替代引起基因的疾病。一种称为基因替代的策略是通过向细胞传递功能性基因的作用,以便开始在整个体内受到疾病影响的细胞中产生功能性蛋白质。在Duchenne情况下,错误的基因会影响蛋白保护肌肉的需求,称为肌营养不良蛋白。在没有肌营养不良蛋白的情况下,肌肉容易受到损害,并导致肌肉逐渐丧失被脂肪和纤维化所取代。Duchenne中的当前基因替代策略旨在将基因的功能缩短副本传递给肌肉细胞。由于难以触及体内的许多肌肉,科学家开始使用病毒到达靶细胞,因为它们的自然能力可以导航人体。在自然界中,病毒被设计为进入细胞核,基本上“感染”了它,并沉积了自己的遗传密码以开始产生更多的病毒。对于基因疗法,已将病毒修改为不引起疾病,而是将治疗性遗传物质携带到细胞中以帮助纠正疾病。
文章历史记录:24-511收到:28-May-28修订:接受:03-JUL-24接受:06-JUL-24在线首次:14-JUL-24摘要该论文提出了表明牛在Kazakhstan Kostanay地区的牛sarcococystosis的结果。检查了来自358个牛尸体的肌肉样本的肌肉样本。来自东部区域的公牛的颈部肌肉,西部地区的奶牛中的骨骼和隔膜肌肉受到严重感染。感染最少的是北部地区公牛的颈部肌肉和南部地区的骨骼肌肉。感染的程度等于研究牲畜的77.4%。基于分子遗传分析和细胞色素 - 氧化酶(COX1)序列的比较,在科斯塔尼地区首次鉴定出三种类型的牛肉眼:S。Cruzi,S。S. bovifelis和S. dehongensis。这项研究强调了Kostanay地区肌细胞增多症的显着流行,这表明Cox1基因测序在鉴定不同的肌囊肿物种中的实用性。这些发现强调了改善控制和预防策略的需求,以减轻对牛健康和生产力的影响。关键词:牛,肌肉细胞,肌肉样本,患病率,分子遗传分析
卫星发现,由于无法在分裂之前无法正确建立极性,因此肌肉干细胞无法充分促进现有或产生新的肌肉纤维的新肌肉纤维。我们认为,这种损伤比现有肌肉纤维中的肌营养不良蛋白缺乏症更重要,并且已经鉴定出蛋白激酶靶标AAK1,该蛋白激酶靶标在抑制时会促进对非对称干细胞分裂的功能拯救。最近宣布提名我们的主要药物候选人SAT-3247,我们在这里介绍了关键的临床前发现和临床计划草案的摘要。
AIMS中风是大脑中局部和突然的神经系统疾病,可以降低肌肉力量。这项研究旨在确定本体感受性神经肌肉促进运动对中风患者肌肉力量的影响。材料和方法于2017 - 2018年进行了随机对照组的临时临床试验。中风患者被转交给伊朗Yasuj City的Shahid Beheshti医院神经病学系。通过便利采样选择了60名合格的中风患者,并使用随机块分配分配给干预和对照组。数据是通过基线,干预后立即在上次干预后立即通过肌肉力量问卷收集的。使用SPSS 21软件进行统计分析,并采用Wilcoxson和Mann-Whitney U.研究结果在干预前后的研究样本之间没有统计学上的统计学差异。但是,在干预后一个月,两组之间报告了统计学上的显着差异(p <0.05)。测试组平均肌肉强度的差异显着(p = 0.001)。实施本体感受性神经肌肉促进技术的结论可改善中风患者的肌肉力量。
