小儿炎症性肠病(PIBD),包括克罗恩病和溃疡性结肠炎,已成为全球健康挑战,发病率上升。与成人炎症性肠病不同,PIBD呈现出复杂性,包括生长障碍,营养缺乏和社会心理挑战,需要量身定制管理策略。本文回顾了当前的诊断和新兴治疗策略,以突出传统疗法(如氨基氨基酯,皮质类固醇和免疫调节剂)到高级生物学剂等传统疗法的演变。在内的新兴生物学疗法,包括吠陀珠单抗和乌斯凯尼亚单抗,表现出希望,而新型的小分子疗法(例如Janus激酶(JAK)抑制剂)正在研究用于小儿种群的潜在用途。支持性治疗,包括独家肠内营养,改良的饮食和益生菌,在综合疾病管理中起着至关重要的作用。干细胞疗法和粪便菌群移植代表仍在临床评估下的创新方法。评论强调了整体护理的重要性,结合了心身干预和社会心理支持,以提高患者的生活质量。关键挑战持续存在,例如与长期生物疗法使用相关的感染风险,小儿特异性指南的差距以及在临床试验中不包含儿童。持续的研究和协作对于促进PIBD的理解和管理至关重要,以确保儿科患者从可用的最有效,基于证据的护理中受益。未来的建议强调了结构化过渡计划的重要性,桥接儿科和成人护理,定期更新临床准则以及将精密医学整合到个性化治疗计划中。
心力衰竭 (HF) 增加了全球心血管健康的负担。最近有研究表明,心力衰竭患者的肠道微生物群具有独特的变化,这些变化会影响免疫稳态和代谢。在本次文献系统综述中,我们旨在确定肠道菌群失调对心力衰竭的影响。我们使用了系统评价和荟萃分析的首选报告项目 (PRISMA) 2020 指南进行系统评价。我们在 PubMed、PubMed Central (PMC)、Medline 和 ScienceDirect 等数据库上搜索了文献。纳入了十篇文章进行审查。心力衰竭患者的肠道微生物组组成存在显著差异。瘤胃球菌、大肠杆菌、志贺氏菌、链球菌属、韦荣球菌属和放线菌相对丰度较高,真细菌、普氏菌、粪杆菌、SMB53 和巨单胞菌相对减少。这种组成因年龄、心力衰竭分期和失代偿水平而异。但射血分数不变,其组成保持不变。负责氨基酸、碳水化合物、胆碱三甲胺裂解酶 (TMA-裂解酶)、脂多糖 (LPS) 生物合成、色氨酸和脂质代谢的基因表达增加。由此产生的变化影响了代谢物(如三甲胺 N-氧化物 (TMAO)、吲哚硫酸盐 (IS) 和 LPS)以及粪便和血浆中的炎症标志物的水平,从而导致心力衰竭。这些心力衰竭生物标志物可以作为预防和治疗心力衰竭的目标。心力衰竭患者拥有独特的肠道微生物群,这些微生物群会影响心力衰竭的发病机制。需要进一步研究来了解菌群失调与心力衰竭之间的因果关系。
抽象目标肠道病毒素是居住在胃肠道和微生物群中不可或缺的一部分的病毒的密集社区。病毒瘤与微生物群的其他成分并在动态平衡中共存,这是维持肠内稳态和功能的关键因素。但是,在某些病理状态(包括炎症性肠病)中可以中断这种平衡,从而导致营养不良,可能参与疾病发病机理。然而,病毒蛋白营养不良是因果关系还是旁观者事件,需要进一步澄清。设计本评论旨在总结肠道病毒蛋白研究的最新进步,并强调了其与粘膜微环境的串扰。它探讨了尖端技术如何基于当前知识以推进该领域的研究。提供了胃肠道胃肠道中病毒蛋白移植的概述,并洞悉基于创新的病毒素治疗剂的发展以改善临床管理。结果主要是由小尾病毒的扩张驱动的肠道病毒营养不良,已被证明会影响肠道免疫和屏障功能,从而影响整体肠内稳态。尽管新兴的创新技术仍然需要进一步的实施,但它们显示出前所未有的潜力,可以更好地表征病毒素组成并描述其在肠道疾病中的作用。结论得益于测序技术和生物信息学管道的进步,肠道病毒的领域正在逐步扩展。这些有助于更好地了解病毒蛋白营养不良与肠道疾病的发病机理以及病毒蛋白组成的调节如何有助于临床干预以减轻肠道疾病管理有关。
o 先天性代谢错误,例如苯丙酮尿症 (PKU)、枫糖尿病、高胱氨酸尿症、甲基丙二酸血症、丙酸血症、异戊酸血症和其他亮氨酸代谢紊乱;戊二酸尿症 I 型和酪氨酸血症 I 型和 II 型;以及尿素循环障碍);或 o 年龄小于 24 个月的慢性肾病 (CKD) 2 至 5 期(或接受透析治疗);或 o 克罗恩病;或 o 严重吸收不良综合征(例如囊性纤维化、短肠综合征或肠衰竭);或 o 营养不良,或者如果不进行营养治疗,个人将营养不良或患有严重疾病,例如身体残疾、智力残疾或死亡;或 o 严重食物过敏,包括嗜酸性食管炎和其他形式的嗜酸性胃肠道疾病,如果不及时治疗,将导致危及生命的过敏反应、营养不良或死亡(轻度和中度食物过敏或食物不耐受通常可以用食品商店和药房中随时可买到的配方奶粉或精心选择食物来治疗;治疗此类疾病的配方奶粉不被视为医学必需品);或 o 伴有发育停滞的胃食管反流 注:有关承保限制和除外责任的更多信息,请参阅福利注意事项部分。 定义 先天性代谢错误:先天性代谢错误是一组导致代谢途径受阻,从而导致临床上严重后果的疾病。例子包括:苯丙酮尿症 (PKU)、苯丙酮尿症、枫糖尿病、同型胱氨酸尿症、甲基丙二酸血症、丙酸血症、异戊酸血症和其他亮氨酸代谢紊乱;戊二酸尿症 I 型和酪氨酸血症 I 型和 II 型;以及尿素循环障碍(美国国家人类基因组研究所网站,2013 年)。智力障碍:智力障碍 (ID) 是一种神经发育障碍,其特征是智力功能和适应功能缺陷,发病于发育期 (Purugganan, 2018)。医疗食品:在医生监督下配制用于食用或肠内给药的食品,旨在用于对疾病或病症进行特定的饮食管理,针对该疾病或病症,根据公认的科学原理,通过医学评估确定独特的营养需求。一种食品只有在满足以下条件时才可称为(医疗食品):• 它是专门配制和加工的产品(与天然状态下使用的天然食品相反),用于通过口服或管饲的方式为患者进行部分或全部喂养;• 它旨在用于由于治疗或慢性医疗需要而导致摄取、消化、吸收能力有限或受损的患者的饮食管理,或代谢普通食物或某些营养素,或有其他特殊的医学确定的营养需求,其饮食管理不能仅通过改变正常饮食来实现;• 它提供专门为管理由特定疾病或病症导致的独特营养需求而修改的营养支持,由医学评估确定;• 它旨在在医疗监督下使用; • 仅适用于正在接受主动和持续医疗监督的患者,即患者需要定期接受医疗护理,其中包括有关使用医疗食品的说明(《联邦法规》21 CFR 101.9(j)(8) 医疗食品不同于更广泛的特殊膳食食品类别和声称有健康功效的食品,因为医疗食品必须在医疗监督下使用。 “医疗食品”一词并不涵盖所有喂给病人的食品。 医疗食品是专门为重病患者或需要将产品作为主要治疗方式的患者配制和加工的食品(与天然状态下使用的天然食品相反)。典型的医疗食品是肠内营养产品,即通过胃肠道提供、口服或通过将营养物质输送到口腔以外或直接输送到胃的管子或导管提供的产品(美国食品药品监督管理局,2006 年)。专用营养配方:为满足特定疾病状况的独特营养需求而生产的配方。适用代码:以下程序和/或诊断代码列表仅供参考,可能并非全部。本保单中列出的代码并不意味着该代码所描述的服务是否在承保范围内。医疗食品是专门为重病患者或需要将其作为主要治疗手段的患者配制和加工的食品(与天然状态下使用的天然食品不同)。典型的医疗食品是肠内营养产品,即通过胃肠道提供、口服或通过导管将营养物质输送到口腔以外或直接输送到胃部的产品(美国食品药品监督管理局,2006 年)。特殊营养配方:为满足特定疾病状况的独特营养需求而生产的配方。适用代码以下程序和/或诊断代码列表仅供参考,可能并不全面。本政策中列出的代码并不意味着该代码所描述的服务是承保的或未承保的医疗食品是专门为重病患者或需要将其作为主要治疗手段的患者配制和加工的食品(与天然状态下使用的天然食品不同)。典型的医疗食品是肠内营养产品,即通过胃肠道提供、口服或通过导管将营养物质输送到口腔以外或直接输送到胃部的产品(美国食品药品监督管理局,2006 年)。特殊营养配方:为满足特定疾病状况的独特营养需求而生产的配方。适用代码以下程序和/或诊断代码列表仅供参考,可能并不全面。本政策中列出的代码并不意味着该代码所描述的服务是承保的或未承保的
摘要:ATLAS 和 CMS 实验预测高亮度大型强子对撞机(HL-LHC)最内层像素探测器的辐射注量高达 1 × 10 16 1 MeV n eq /cm 2。辐射剂量的增加将导致探测器性能下降,例如漏电流和完全耗尽电压增加,信号和电荷收集效率降低,这意味着有必要开发用于甚高亮度对撞机的抗辐射半导体器件。在我们前期对超快三维沟槽电极硅探测器的研究中,通过模拟不同最小电离粒子(MIP)撞击位置下的感应瞬态电流,验证了从 30 ps 到 140 ps 的超快响应时间。本工作将利用专业软件有限元技术计算机辅助设计(TCAD)软件框架,模拟计算探测器在不同辐射剂量下的全耗尽电压、击穿电压、漏电流、电容、加权场和MIP感应瞬态电流(信号)。通过分析模拟结果,可以预测探测器在重辐射环境下的性能。像素探测器的制作将在中国科学院微电子研究所的CMOS工艺平台上进行,采用超纯高电阻率(高达10 4 ohm·cm)硅材料。
a 比利时鲁汶天主教大学慢性疾病与代谢系 b 瑞士巴塞尔 F. 霍夫曼-罗氏有限公司个性化医疗保健与患者访问 c 奥地利维也纳医科大学内科 III 系、胃肠病学和肝病学分部 d 荷兰鹿特丹伊拉斯姆斯医学中心胃肠病学系 e 德国柏林夏利特大学医学院胃肠病学、传染病学和风湿病学分部 f 西班牙巴塞罗那大学瓦尔德赫布伦医院克罗恩结肠炎科 g 荷兰鹿特丹伊拉斯姆斯医学中心质量与患者护理 h 瑞典斯德哥尔摩卡罗琳斯卡医学院索尔纳医学系 i 瑞典斯德哥尔摩卡罗琳斯卡大学医院胃肠病学、皮肤性病学和风湿病学系胃肠病学科成果研究,维也纳医科大学医学数据科学中心,维也纳,奥地利 k 路德维希玻尔兹曼关节炎和康复研究所,维也纳,奥地利 l 奥胡斯大学医院肝病学和胃肠病学系,奥胡斯,丹麦 m 奥尔堡大学临床医学系,炎症性肠病分子预测中心 [PREDICT],哥本哈根,丹麦 n 米兰圣拉斐尔医院胃肠病学和消化内镜学系,意大利米兰 o AO San Camillo-Forlanini IBD 科,意大利罗马 p 意大利米兰生命健康圣拉斐尔大学医学院 q 奥地利维也纳奥地利克罗恩病/溃疡性结肠炎联盟 [ÖMCCV] r 德国克罗恩病/溃疡性结肠炎联盟科学转诊,DCCV eV,柏林,德国 s 比利时炎症性肠病研究与开发小组 [BIRD],比利时扎芬特姆 t 希腊克罗恩病和溃疡性结肠炎患者协会 [HELLESCC],希腊雅典 u 匈牙利乳糜泻协会,匈牙利布达佩斯 v 比利时鲁汶大学医院胃肠病学和肝病学系 通讯作者:Marc Ferrante,比利时鲁汶大学医院胃肠病学和肝病学系医学教授,Herestraat 49, B3000 鲁汶,+32 016 34 28 45;电子邮箱:marc.ferrante@uzleuven.be
尽管内分泌破坏者的概念首次出现在大约30年前,但这些物质在代谢病理学(肥胖,糖尿病,肝脂肪变性等)的病因学中相对较新的参与。引起了代谢破坏化学物质(MDC)的概念。在这些物质的代谢中断的背景下,已经对肝脏和脂肪组织等器官进行了很好的研究。但是,尽管与这些器官的密切联系,但肠道一直没有探索。体内模型可用于研究MDC在静脉内的影响,此外,还可以研究与其他生物体的相互作用。在后者的方面,斑马鱼是一种动物模型,它越来越多地用于表征内分泌干扰物及其用作评估对肠道影响的模型,毫无疑问,毫无疑问,它会扩大。This review aims to highlight the importance of the intestine in metabolism and present the zebrafish as a relevant alternative model for investigating the effect of pollutants in the intestine by focusing, in particular, on cyto- chrome P450 3A (CYP3A), one of the major molecular players in endoge- nous and MDCs metabolism in the gut.
摘要:肠道微生物组是一个由细菌,病毒和真菌组成的多种微生物群落,在人类健康和疾病中起着重要作用。在遗传易感宿主中,这些肠道生物的失调症是炎症性肠病(IBD)的发病机理的基础。虽然细菌性营养不良一直是研究的主要重点,但人们越来越认识到与宿主免疫系统的真菌相互作用是肠道炎症的重要驱动力。在IBD的背景下,白色念珠菌可能是研究最多的真菌,是人类几乎是普遍的肠道分子,也是一种主要的屏障侵入性致病原。有新的证据表明,白色念珠菌毒力因子的施加内变异对IBD病理生理学产生了严重影响。在这篇综述中,我们描述了C. lbicans殖民化,形态,遗传学和蛋白质组学在IBD中的免疫学影响,以及临床和治疗意义。
摘要 - 这项工作提出了一个综合的电化学和电生理生物监测系统,使能够沿肠道脑轴(GBA)进行分子信号的研究。体外肠道细胞培养物为研究肠道生理学提供了可控制的,可访问的平台。同样,离体cray鱼腹神经绳为神经信号传导的电生理研究提供了模型。在第一次,我们的系统集成了这些平台,以便研究从肠道到神经系统的信号传导,这些信号传导会影响大脑。The platform consists of two interconnected modules: (I) the electrochemistry module (ECM), mimicking a Transwell platform for cell growth and enabling neurotransmitter (serotonin (5-HT)) detection, and (II) the electrophysiology module (EPM), hosting a dissected crayfish nerve cord and allowing electrode accessibility for the assessment of nerve responses to 5-ht。通过在体温(38℃)附近的可靠加热器(38℃),跨膜膜修改中纳入良好的细胞来帮助整个系统的整合,以改善分子扩散(450倍),同时保持良好的细胞兼容性,并保持良好的细胞兼容性,并从ECM中进行精确控制的5-HT运输。这项工作实现了模块的特定环境控制,最终将使肠道和神经细胞之间的分子信号转导研究,以促进对GBA内两个组织的实时监测。[2020-0151]