它不能控制它。一些特定的细菌控制肠道中免疫细胞的质量和数量。肠道最初是一种维持抗炎的器官,并且控制着特别居住的肠道免疫的已知肠道细菌之一是SFB(分段的丝状细菌)。 SFB是一种非常独特的细菌,可在肠上皮细胞中定殖,并使用一种称为伴侣(微生物粘附触发的内吞作用)的方法将抗原传递到肠粘膜中的T细胞中,并诱导具有抗原特异性抗激发性抗炎特性的TH17细胞,以替代小肠。众所周知,Th17细胞的性质不同,取决于它们诱导的细菌和诱导的位置,SFB诱导的Th17细胞具有抗炎并增强肠壁。尽管SFB-TH17细胞在全身糖和能量代谢中的作用尚不清楚,但我们发现SFB-TH17细胞具有抗肥胖和糖尿病的作用,并报道高糖/高蔗糖破坏其维持机制2)。有趣的是,发现在SFB单殖民化小鼠中不会发生高糖引起的SFB减少,该小鼠仅在无菌环境中建立了SFB,并且是依赖于SFB以外其他肠道细菌的机制。在高蔗糖和高蔗糖水负荷的情况下,我们集中在一种称为FROD的物种(粪便脂质啮齿动物)上,这是由于高蔗糖而导致的最大变化,并进行了一个SFB和FROD,在无菌小鼠中,SFB和FROD在较高的小鼠中得到了群体的群体。小肠Th17细胞被打破。据说这种机制会导致高蔗糖分解肠道细菌和肠道免疫的稳态维持机制。 最好的糖尿病治疗尚未确定。稳态Th17细胞还保持其功能,而不会损害其稳态至一定的蔗糖浓度,这表明最佳蔗糖浓度有阈值。将来,希望设定可以帮助人们保持健康,维持肠道细菌和肠道免疫的适当摄入量,并检查可以在这种环境下维持肠道免疫稳态的益生菌将成为克服肥胖和糖尿病的治疗策略。
豆科农作物不仅用作人类饮食,而且还可以通过其在生物氮固定中的有效作用来改善土壤生育能力。Among to the grain legumes, common bean ( Phaseolus vulgaris L.) is the most important pulse crop in the world.这是对发展中国家和发达国家数百万人的卡路里,蛋白质,饮食纤维,矿物质和维生素的重要来源(Elkhatib,2002)。Egypt is the main exporter of dry and green beans.因此,在过去的几年中,干豆和绿豆种植的膨胀表现出了令人印象深刻的增长,2016年的耕作面积为105377公顷,生产287575吨和33135公顷,分别生产112925吨绿和干豆(FAO,2013年)。Any advances in scientific research that
本次演讲是每月 H2IQ 活动的一部分,旨在重点介绍美国能源部能源效率和可再生能源办公室 (EERE) 下属氢能和燃料电池技术办公室 (HFTO) 资助的研究和开发活动。
sirtuins(Sirt)表现出脱乙酰化或ADP-核糖基转移酶活性,并调节细胞核,线粒体和细胞质中的各种细胞过程。尚不清楚唯一驻留在细胞质中的SIRTUIN SIRT2在心力衰竭发展(HF)和心脏肥大中的作用。在本文中,我们表明删除SIRT2(SIRT2 - / - )的小鼠的心脏在缺血 - 重新灌注(I/R)和压力重载(PO)后显示出改善的心脏功能(PO),这表明SIRT2对压力的响应对心脏中的心脏不良效应发挥了不良适应性作用。在具有心肌细胞特异性SIRT2缺失的小鼠中获得了相似的结果。机械研究表明,SIRT2调节核因子的细胞水平和活性(红细胞衍生的2)类似2(NRF2),从而导致抗氧化剂蛋白的表达降低。在sirt2 - / - 鼠标心脏中删除NRF2,在PO之后逆转了保护。最后,用特定的SIRT2抑制剂对小鼠心脏进行处理可减少心脏大小,并减轻对PO的心脏肥大。这些数据表明SIRT2在心脏中具有有害作用,并且在HF和心脏肥大的进展中起作用,这使该蛋白成为SIRT家族的独特成员。此外,我们的研究还通过以药理学为目标,为心脏肥大的治疗提供了一种新颖的方法,为治疗这种疾病提供了一种新颖的途径。
摘要 。农业废弃物处理是一种提供创新解决方案以减少废弃物对环境的负面影响同时提高农业生产力的有机体。通过使用细菌、真菌和放线菌等微生物,可以有效处理秸秆、粪肥和咖啡渣等废弃物。这种生物过程加速了有机物分解成更无害的物质和营养物质,例如氮、磷和钾,这些物质和营养物质对植物生长至关重要。除了提高土壤肥力外,使用有机肥料还可以减少对化肥的依赖、温室气体排放和可持续农业。本研究的目的是通过研究微生物学的机制、潜力和挑战来调查微生物学在农业废弃物转化中的作用。本研究的结果表明,基于微生物的技术有助于更环保的实践并强化基本的经济原则。将农业废弃物加工成有机肥料是实现该行业可持续性的战略步骤。关键词:微生物学、农业废弃物、有机肥料。摘要。重要的是,有机体需要解决问题并进行创新,以消除潜在的负面影响。请注意微生物、细菌、细菌、微生物、细菌、细菌、微生物、以及 Diola 的作用。生物学中的散文是彭古拉安巴汉有机食品中的营养成分、氮、磷、钾、营养成分。请注意,使用本产品时,请先将有机物放入水中,然后再将其放入水中,然后再将其排出。图胡安·达里·潘尼利蒂安(Penelitian)表示,它是微生物生物学的重要组成部分,具有重要的机械性能、性能和性能。哈西尔·佩内利蒂安 (Hasil Penelitian) 的菜单和技术是微生物技术的重要组成部分,它与经济原理和经济原理密切相关。 Pengolahanlimbah pertanian menjadi pupuk Organik Merupakan langkah Strategis dalam mewujudkan keberlanjutan Sektor。 Kata kunci : Mikrobiologi、limbah pertanian、pupuk Organik。
那不勒斯大学Federico II的研究小组已经描述了角肥的分子组成(Spaccini等,2012)。这项研究采用核磁共振(NMR)光谱和热解质谱法。它揭示了一个复杂的分子组成:木质素(植物的纤维部分),植物多糖(糖)以及植物和微生物起源的线性和环状脂质成分(脂肪)的酚类衍生物。该组成类似于农业中使用的各种堆肥,但具有较大的酚类木质素残基。这个关键属性是什么意思?在普通成熟的堆肥中,在有氧条件下开发了嗡嗡作响的过程,不稳定的水物质物质(例如碳水化合物)的分解主要归因于细菌,伴随着柠檬蛋白聚合物结构的广泛降解,而真菌的含水蛋白聚合物结构,而含水酸(例如脂肪酸)均累积了。相反,在牛角内部的肥料的厌氧嗡嗡作用减少了真菌活性,从而积累了更大量的酚类残基,这些残基会赋予角粪对植物生长产生更重要的生物学活性。
心力衰竭是由导致心脏肥大的各种生理和病理刺激引起的。这种病理过程常见于多种心血管疾病,并最终导致心力衰竭。心脏肥大和心力衰竭的发展涉及基因表达的重编程,这一过程高度依赖于表观遗传调控。组蛋白乙酰化受心脏应激的动态调节。组蛋白乙酰转移酶在心脏肥大和心力衰竭的表观遗传重塑中起重要作用。组蛋白乙酰转移酶的调控是信号转导和下游基因重编程之间的桥梁。研究心脏肥大和心力衰竭中组蛋白乙酰转移酶和组蛋白修饰位点的变化将为治疗这些疾病提供新的治疗策略。本综述总结了组蛋白乙酰化位点和组蛋白乙酰化酶与心脏肥大和心力衰竭的关联,重点介绍了组蛋白乙酰化位点。
作者的完整列表:Bhullar,Sukhwinder; Naranjan Dhalla St.Boniface研究中心心血管科学研究所;加拿大温尼伯曼尼托巴省马克斯·拉迪医学院,马克斯·拉迪医学院,圣博尼法斯医院Albrechtsen研究中心和生理学与病理生理学系心血管科学研究所。
压力超负荷引起的病理心脏肥大(CH)是心脏的复杂且自适应的重塑,主要涉及心肌大小的增加和心室壁增厚。随着时间的流逝,这些变化会导致心力衰竭(HF)。然而,这两个过程的个体和公共生物学机制仍然鲜为人知。这项研究旨在在四个星期和六个星期的横向主动脉收缩(TAC)分别鉴定与CH和HF相关的关键基因和信号传导途径,并在整个心脏转录组水平上从CH到HF的动态过渡中研究潜在的潜在分子机制。最初,在左心房(LA),左心室(LV)和右心室(RV)中鉴定了CH的总共363、482和264个差异表达的基因(DEG),以及HF的317、305和416摄氏度。这些确定的DEG可以用作不同心脏腔室的两个条件的生物标志物。此外,在所有腔室中都发现了两个公共DEG,弹性蛋白(ELN)和血红蛋白β链链链-Beta链变体(HBB -BS),在LA和LV中,LA和LV中有35个公共DEG,CH和HF中的LV和RV中有15个公共DEG。这些基因的功能富集分析强调了细胞外基质和肌膜在CH和HF中的关键作用。最后,确定了三组轮毂基因,包括赖氨酸氧化酶(LOX)家族,成纤维细胞生长因子(FGF)家族和NADH-偶像性氧化还原酶(NDUF)家族,是从CH到HF的动态变化的必不可少的基因。