CRISPR/Cas9 已实现多种组织中的可诱导基因敲除;然而,尚未有其在棕色脂肪组织 (BAT) 中的应用报道。在此,我们开发了棕色脂肪细胞 CRISPR (BAd-CRISPR) 方法来快速检测一个或多个基因的功能。使用 BAd-CRISPR,将表达单向导 RNA (sgRNA) 的腺相关病毒 (AAV8) 直接施用于在棕色脂肪细胞中表达 Cas9 的小鼠的 BAT。我们表明,将 AAV8-sgRNA 局部施用于成年小鼠的肩胛间 BAT 可强有力地转导棕色脂肪细胞,并使脂联素、脂肪甘油三酯脂肪酶、脂肪酸合酶、周脂素 1 或硬脂酰辅酶 A 去饱和酶 1 的表达降低 90% 以上。施用多个 AAV8 sgRNA 可同时敲除多达三个基因。 BAd-CRISPR 诱导移码突变并抑制靶基因 mRNA 表达,但不会导致 BAT 中脱靶突变的大量积累。我们利用 BAd-CRISPR 创建了可诱导的解偶联蛋白 1 (Ucp1) 敲除小鼠,以评估 UCP1 缺失对成年小鼠适应性产热的影响。可诱导的 Ucp1 敲除不会改变核心体温;然而,BAd-CRISPR Ucp1 小鼠的成纤维细胞生长因子 21 循环浓度升高,并且 BAT 基因表达发生变化,与通过增加过氧化物酶体脂质氧化而产生的热量一致。其他分子适应性预示着额外的细胞效率低下,蛋白质合成和周转增加,线粒体对线粒体编码基因表达的依赖降低,核编码线粒体基因表达增加。这些数据表明 BAd-CRISPR 是一种加速脂肪组织生物学发现的有效工具。
肩突硬蜱,即黑腿蜱,是莱姆病螺旋体伯氏疏螺旋体的主要媒介,是美国每年约 47 万例莱姆病病例中的大多数是由其引起的。肩突硬蜱可以传播另外六种对人类健康有影响的病原体。由于其医学重要性,肩突硬蜱是第一个被测序和注释的蜱基因组。然而,由于节肢动物基因组特有的长重复基因组序列以及缺乏长读长测序技术所带来的技术挑战,第一个组装体肩突硬蜱 Wikel (IscaW) 高度碎片化。尽管由于胚胎注射和 CRISPR-Cas9 介导的基因编辑等新工具的出现,肩胛带蜱已成为蜱研究的模型,但缺乏染色体级支架减缓了蜱生物学的进展和控制工具的开发。在这里,我们结合了多种技术来制作肩胛带蜱 Gulia-Nuss (IscGN) 基因组组装和基因组。我们使用了来自卵和雄性和雌性成年蜱的 DNA,并利用 Hi-C、PacBio HiFi 测序和 Illumina 短读测序技术来制作染色体水平的组装。在这项工作中,我们展示了由 13 条常染色体和性假染色体组成的预测假染色体:X 和 Y,以及与现有组装和注释相比显着改进的基因组注释。
患者在镇痛和局部麻醉下接受了背部病变活检。然而,在活检过程中,患者出现了过敏反应,随后心肺骤停。患者每 15 分钟接受 80 毫克甲基强的松龙和 0.3 毫克盐酸肾上腺素注射。此外,患者还接受了经口气管插管和心脏按摩。值得庆幸的是,急救队成功稳定了患者,随后的超声心动图检查发现了一个大的包虫囊肿。超声心动图检查发现患者的收缩功能正常。MRI 和计算机断层扫描 (CT) 图像在室间隔和左肝叶中检测到包虫囊肿病变(图 2)。此外,从肩胛区抽取的液体被送去进行细胞学和病理学检查。包虫囊肿间接血凝试验(棘球绦虫抗体)结果为 1/640 阳性。包虫血清学检查呈阳性,基于酶联免疫吸附试验 (ELISA) 的细粒棘球绦虫免疫球蛋白 (IgG) 抗体定性评估证实了包虫病的诊断。开始抗原虫药物治疗。患者病情稳定后,被转诊至三级心脏中心,安装心脏起搏器治疗完全性房室传导阻滞。患者父母和/或法定监护人已获得书面知情同意书。
针对神经肌肉疾病开发了一种新的运动功能测量量表。验证研究包括 303 名患者,年龄为 6-62 岁。72 名患者患有杜氏肌营养不良症,32 名贝克尔肌营养不良症,30 名肢带型肌营养不良症,39 名面肩胛肱骨营养不良症,29 名强直性肌营养不良症,21 名先天性肌病,10 名先天性肌营养不良症,35 名脊髓性肌萎缩症和 35 名遗传性神经病变。该量表包含 32 个项目,分为三个维度:站立姿势和转移、轴向和近端运动功能、远端运动功能。评分者间信度一致性系数在 9 个项目中为优秀 (k Z 0.81–0.94),在 20 个项目中为良好 (k Z 0.61–0.80),在 3 个项目中为中等 (k Z 0.51–0.60)。总分与其他分数之间存在高度相关性:Vignos (r Z 0.91) 和 Brooke (r Z 0.85) 等级、功能独立性测量 (r Z 0.91)、医生 (r Z 0.88) 和物理治疗师 (r Z 0.91) 使用视觉模拟量表评估的残疾总体严重程度。该量表可靠,不需要任何特殊设备,并且深受患者欢迎。正在评估其对变化的敏感性,以允许其用于神经肌肉疾病的临床试验。q 2005 Elsevier B.V. 保留所有权利。