我们报告了通过解离电子附着于气态甲酰胺而产生的阴离子的三维动量成像测量的实验结果。从动量图像中,我们分析了 NH7、O~ 和 H~ 碎片的角能和动能分布,并讨论了两种入射电子能量范围(从 5.3 eV 到 6.8 eV 以及从 f 0.0 eV 到 ff .5 eV)的多重共振的可能电子附着和解离机制。与实验结果相比,对于 ^6 eV 入射电子,NET 阴离子的角分布的从头算理论结果强烈表明,产生该碎片的两个共振之一是 2 A" Feshbach 共振。
电子-分子碰撞过程指的是分子捕获低能电子(即能量高达 ∼ 20 eV)形成短暂、不稳定的分子阴离子,然后解离成几个碎片(一个负离子,其他都是中性),这是一个长期研究的过程,称为解离电子附着(DEA)。DEA 是基于电子-分子碰撞的基本相互作用之一 [1-8],在凝聚态物质 [9-12]、气态电子 [13] 到低能等离子体 [14] 等多个领域中发挥着重要作用。自然环境中 DEA 与分子相关的低能电子通常是物质与高能光子或粒子之间初级相互作用的副产物。研究表明,这些电子在生物过程中起着关键作用,例如引发 DNA 链断裂和其他 DNA 解离过程 [ 15 – 18 ] 以及蛋白质的辐射损伤 [ 19 ]。甲酰胺 (HCONH 2 ) 被广泛认为是研究蛋白质和肽化学的原型模型分子,因为它具有简单而丰富的结构,其中包括一个酰胺键。甲酰胺分解成其他值得注意的简单有机分子(例如 CH、HCN、HCNO 等)已在实验和理论环境中得到广泛研究。甲酰胺由许多复杂生物分子(如蛋白质和核酸)的祖先组成,被认为是简单生物分子进化为复杂结构的重要环节。此外,甲酰胺由于其 NC 酰胺键而引起了广泛关注。这一特征使甲酰胺成为研究电子捕获的典型分子
转谷氨酰胺酶 (TGases) 催化钙依赖性异肽键在蛋白质结合的谷氨酰胺和赖氨酸底物之间形成。之前我们已经表明,活化的 TGase 3 在位点 2 和 3 处获得两个额外的钙离子。位点 3 处的钙离子导致通道打开。在此位点,通道的打开和关闭可能会根据结合的金属进行调节。在这里,我们提出通道的前端可以被两种底物用于酶反应。我们提出,谷氨酰胺底物从 Trp236 直接进入酶,如分子对接所示。然后赖氨酸底物接近打开的活性位点以与 Trp327 结合,从而形成异肽键。此外,通过直接比较 TGase 3 与其他 TGase 的结构,我们能够识别出可能参与谷氨酰胺和赖氨酸底物的一般和特异性识别的几种残基。
鉴于与肽稳定性相关的挑战,制定提高肽稳定性的策略至关重要。以下是一些可用于提高肽稳定性的策略:化学修饰可用于通过改变肽的性质(例如电荷、疏水性和构象稳定性)来提高肽稳定性。例如,环化可以通过降低构象灵活性和增加对蛋白酶降解的抵抗力来提高肽的稳定性。肽类似物是经过修饰以提高其稳定性和生物活性的肽。这些修饰可以包括添加非天然氨基酸、修饰肽键和掺入肽模拟物 [3]。
蛋白质是氨基酸链,每个氨基酸链通过特定类型的共价键与其相邻氨基酸连接。肽键聚合 L-α 氨基酸形成了蛋白质的基本结构。蛋白质是指由约 50 种氨基酸组成的样本。肽是指由不到 50 种氨基酸组成的颗粒 (Bhargav, 2017)。蛋白质和肽是一种非常有潜力的治疗药物,目前蛋白质药物市场预计每年超过 400 亿美元,处方行业占 10%。这些蛋白质和肽有一些局限性,例如生物利用度较低和代谢责任。肽主要针对广泛的分子,并在肿瘤学、免疫学、传染病和内分泌学等领域提供了无限的可能性 (Bruno、Miller 和 Lim, 2013)。蛋白质和肽是水解后含有两个或多个氨基酸的生物聚合物。它们的原理是细胞的原生质,分子量更大
简介:核糖体通过将小核糖体亚基与大型核糖体亚基与肽键形成的质体RNA耦合,从而催化所有细胞中的蛋白质合成。由于两个亚基都由核糖体RNA和核糖体蛋白组成,因此这些分子机的组装受到严格控制。在人类细胞中,超过200个核糖体组装因子催化了两个核糖体亚基的成熟。核糖体组装是在核仁中启动的,核仁是通过多价蛋白质 - 核酸相互作用形成的生物分子冷凝物。在该生物分子冷凝物中,形成了小亚基的第一个稳定的真核核糖体组装中间体,小亚基(SSU)造型。在SSU过程中,70多种蛋白质和RNA伴侣,小核仁RNA(SNORNA)U3,共同起作用,可通过RNA Exosome来实现RNA折叠,修饰,重排和裂解以及靶向降解前RNA的降解。与人类疾病相关的核糖体蛋白质和核糖体组装因子突变强调了这一过程的本质。
精准医疗结合了分子生物学、化学、材料科学和其他领域的多个跨学科领域,以产生更准确的疾病治疗方法。测序、细胞区室和治疗靶点表征方面的进展,以及制药行业的进步,导致了高级研究和临床试验数量的增加。许多临床试验都涉及用于治疗各种疾病(如代谢、免疫和激素紊乱以及癌症)的蛋白质和肽类药物。[1] 制药市场上大约 10% 的药物是肽类或蛋白质药物,包括 DrugBank 中的 485 条肽类药物 [2] 和 THPdb 中 239 条 FDA 批准的肽类药物。[1] 肽类和蛋白质药物因其生物相容性、通过氨基酸序列变化设计的灵活性以及独特的分子拓扑结构,在从传感和催化到治疗等各种应用中具有巨大潜力。 [3] 更具体地说,它们表现出独特的属性,例如氢键潜力、氨基酸固有的手性、多态性 [4] 和源自肽键的构象刚性。[3] 此外,肽可以是天然的也可以是合成的,例子包括重组激素、抗菌肽、抗体和重组酶,[5] 此外,还可以加入非天然氨基酸来进一步实现化学多样化。[6]
本综述研究了PIN1在癌症发展和治疗中的复杂作用。PIN1是唯一可以识别并同构化磷酸化的Ser/Thr-Pro肽键的肽基 - 丙酰异构酶(PPIASE)。PIN1催化磷酸化的Ser/Thr-Pro基序的结构变化,该基序可以调节蛋白质功能,从而影响细胞周期调节和肿瘤发生。The molecular mechanisms by which Pin1 contributes to oncogenesis are reviewed, including Pin1 overexpression and its correlation with poor cancer prognosis, and the contribution of Pin1 to aggressive tumor phenotypes involved in therapeutic resistance is discussed, with an emphasis on cancer stem cells, the epithelial-to-mesenchymal transition (EMT), and immunosuppression.在鉴定有效的,类似药物的小分子PIN1抑制剂方面,讨论了PIN1抑制在癌症中的治疗潜力。可用的证据通过分析PIN1在复杂的癌症驾驶途径的复杂网络中的作用,并说明使用PIN1抑制剂治疗侵袭性和药物抗药性肿瘤的潜在,将PIN1的作用通过分析PIN1在复杂的癌症驾驶途径的复杂网络中的作用,来支持靶向PIN1作为新型癌症治疗的效率。
巨噬细胞感染增强剂(MIP)蛋白属于免疫蛋白超家族。这类enzemes催化了含脯氨酸肽键的顺式和反式配置之间的互连。MIP已被证明对于多种致病性微生物的毒力很重要,其中包括革兰氏阴性细菌burkholderia pseudomallei。源自天然产物雷帕霉素的小分子缺乏免疫抑制诱导的部分,抑制了MIP的肽基 - 蛋白基蛋白CIS-反式异构酶(PPI-ASE)活性,并导致病原体负荷降低体外。在这里,建立了荧光偏振分析(FPA),以实现BPMIP抑制剂的筛选和有效发展。荧光探针,该探针源自先前用荧光素标记的旧MIP抑制剂。该探针在BPMIP中显示出适度的功能,并启用了适合筛选具有中等至高通量(Z因子〜0.89)的大型化合物文库的高度鲁棒的FPA,以识别有效的新抑制剂。FPA结果与蛋白酶耦合PPIASE分析的数据一致。对探针结合的温度依赖性的分析表明,BPMIP的配体结合是由焓而不是熵效应驱动的。这对使用低温动力学测定有很大的影响。
蛋白酶在原核生物和真核生物中都起着无处不在的作用。在植物中,这些酶在多种生理过程中充当关键调节剂,侵蚀性蛋白质瘤,细胞器开发,衰老,播种,蛋白质加工,环境应激反应,环境应激反应和程序性细胞死亡。蛋白酶的主要功能涉及肽键的分解,导致蛋白质的不可逆翻译后修饰。它们还充当信号分子,最终调节细胞活性,分别分裂并激活了脱肽。此外,蛋白酶通过将错误折叠和异常蛋白质降解为氨基酸而导致细胞修复机制。此过程不仅有助于细胞损伤修复,而且还可以调节生物学对环境压力的反应。蛋白酶在植物素的生物发生中也起着关键作用,该植物激素的生长,发育和对环境挑战的反应(Moloi和Ngara,2023年)。现代农业努力满足由于气候变化和人口迅速增长而导致的粮食,饲料和原材料需求的增加。气候变化是对作物产量潜力产生负面影响的主要因素。在植物防御生化机制内部,蛋白水解酶是几种生理过程的关键调节剂,包括环境应激反应。与动物不同,植物不具有带有移动防御者细胞的自适应免疫系统,因此它们具有通过激活触发生理,形态和生化变化的不同保护机制来适应和适应环境条件的策略。