糖尿病肾病(DKD),也称为糖尿病性肾病,是一种严重的并发症,会影响大量糖尿病患者。这是全球终末期肾脏疾病的主要原因。传统上,DKD被视为一种以肾小球为中心的疾病,重点是肾肾小球发生的损害。然而,新兴的研究阐明了肾小管在DKD的发病机理和进展中的关键作用。本文旨在探讨DKD的肾小管范围,并揭示了肾小管和疾病进展之间的复杂相互作用。他们积极参与炎症,纤维化和免疫反应,使其成为DKD发病机理的关键参与者。在糖尿病条件下,肾小管在结构和功能上经历了深刻的改变,导致管状损伤,间质性炎症和进行性纤维化。糖尿病肾病(DKD),也称为糖尿病性肾病,是全球终末期肾脏疾病的主要原因[1]。虽然糖尿病已损害了肾脏,但最近的研究揭示了肾小管在DKD的发育和发展中的关键作用。传统上,肾小球功能障碍被认为是DKD的主要驱动力,但新出现的证据表明,管状损伤在这种令人衰弱的状况的发病机理中起关键作用。在本文中,我们探讨了DKD的肾小管中心的视角,并讨论了肾小管损伤所涉及的关键机制。
摘要。远端肾小管酸中毒(RTA)是对免疫检查点抑制剂的罕见不良反应,仅在少数情况下发生。据我们所知,sintilimab是一种程序性细胞死亡蛋白1(PD −1)抑制剂引起的远端RTA,尚未先前报道过。在本研究中,据报道,用Sintilimab抗PD -1治疗的62岁男性患有转移性心脏癌的病例。在第四次服用Sintilimab后,治疗过程被代谢高氯性酸中毒与低钾血症中断。尿液和血液检查后,怀疑免疫疗法引起的远端RTA。用Sintilimab和化学疗法的治疗停止,并开始用碳酸氢钠和柠檬酸钾进行治疗,从而产生了足够的反应。本研究提供了继发于Sintilimab治疗的远端RTA的第一个病例。
从脑电图(EEG)信号中解码人的手移动对于开发主动的人类增强系统至关重要。尽管现有研究为从EEG信号解码单手运动方向做出了很大的贡献,但在相反的手移动条件下解码主要的手移动方向仍保持开放。在本文中,我们研究了基于相反手移动下的EEG信号的主要手部运动方向的神经特征,并基于运动相关皮质电位(MRCP)的非线性动力学参数开发了一种新颖的解码方法。实验结果表明,在相反的手移动下,手动运动方向之间MRCP的显着差异。此外,在相反的手运动状态下,提出的方法的表现良好,平均二元解码精度为89.48±5.92%。这项研究可能为上肢的未来发展的人类增强系统奠定了基础,损害了患者和健康的人,并开辟了新的途径,以从EEG信号中解释其他手移动参数(例如,速度和位置)。
组织工程中微管结构的有效复制仍然是一个巨大的挑战。在这项研究中,通过探索2种热敏感水凝胶 - 凝集素甲基丙烯酰基(gelma)和丝晶(Sill-Floyl)(用丝晶(丝晶),研究了通过收缩机制来创建复杂的高分辨率肾小管结构的温度反应性特征(PNIPAM),以创建复杂的高分辨率管状结构。系统的研究揭示了在高温(33-37°C)上对缩小行为的精确控制,这是聚合物浓度的函数。两种水凝胶类型的水凝胶尺寸从室温(RT)降低至33°C,从RT降低至37°C的40%。萎缩的效果可将机械性能提高,使凝胶凝胶凝胶的压缩模量增加约2.8倍,silkma-pnipam凝胶在37°C下在37°C上增加5.1倍。与体积打印相结合,这些材料的分辨率为≈20%的分辨率增强,可实现≈70%的功能,从而实现了≈70%的功能。秒,带有开放通道(≈50μm)。Gelma-PNIPAM水凝胶与Silkma-PNIPAM水凝胶相比显示出更好的细胞兼容性,从而促进细胞粘附和生存能力。这项研究证明了热敏化水凝胶具有工程师复杂的高分辨率管状结构的能力,具有大量打印 - 一种有效的途径,用于制造微观环境,模仿具有开发相关体外模型的天然组织。
引言管状肌病(TAM)是一种罕见的肌肉障碍,具有广泛的表型异质性,从无症状高度高血症到渐进的儿童期形式,具有严重的上肢和下肢肌肉无力,肌痛,肌痛,抽筋和膜(1,2)。大多数患者都表现出其他多系统的体征,例如MIOSIS,血小板减少症,次生症,鱼质病,身材矮小和阅读障碍,并且完整的临床图片称为Stormorken综合征(Strmk)(Strmk)(2-4)。tam和strmk(Omim#160565和#615883)形成临床连续性,病理学迹象的发生和程度取决于所涉及的基因和突变的位置。大多数TAM/Strmk患者在Stim1中携带杂合的错义突变,编码居住在内质/肌浆网(ER/SR)的无处不在表达的Ca 2+传感器。在Ca 2+引起的EF手臂中的突变基本上会导致肌肉表型,偶尔会导致血小板和皮肤,脾脏,骨骼和骨骼的异常耗尽(5-13),而胞质盘旋型域的突变则与coiled-Coiled-Coil 304残基相关(均具有10个残留型),并具有104个杂物(均为804的杂物)。 14-19)。等离子体内置的Ca 2+通道中的错义突变不太普遍,要么影响孔形成的跨膜结构域,并引起严重的表型,并具有明显的肌肉无力,Miosis,出血性核糖症,鱼囊和
在十年前首次引入钠 - 葡萄糖共转移蛋白-2(SGLT2)抑制剂时,没有人期望它们超出其已知降解葡萄糖的影响,直到出现出来的肾上管和心排血管益处的证据出现,直到他们可能会逐渐受到疾病的发展,因为他们可以逐渐受到疾病的发展,因为他们会逐渐受到疾病的影响,因为它会迅速发展,因此,他们会逐渐受到验证。仍然,SGLT2抑制剂主要器官保护基础的确切和精心的机制尚不清楚。sGLT2抑制剂抑制肾脏近端小管中钠和葡萄糖的重吸收,然后恢复块状细胞的反馈,从而减少SGLT2抑制剂,从而减少肾小球过滤。对其受益效应的这种简单证明使专家令人困惑,在寻求更合理的和尚未公开的解释,以解释SGLT2 IN-HIBITOR的全部影响,包括新陈代谢重编程以及低氧,炎症,炎症和氧化应激的调节。鉴于SGLT2抑制剂在肾脏疾病患者中的收益益处与糖尿病患者中看到的糖尿病的益处相当,因此将重点放在其血液动力学作用上可能是合理的。在这种情况下,本综述的目的是在接受SGLT2抑制剂治疗的糖尿病患者的肾脏血液动力学概述中,重点侧重于与微管胶质细胞反馈和潜在水样相关的NATRIURESIS。在整个肾脏钠和水转运的改变过程中,尤其要注意SGLT2抑制后腺苷及其受体的潜在增强。
处理dapagliflozin和empagliflozin的背景是sglt-2(钠 - 葡萄糖CO转运蛋白2)抑制剂。钠 - 葡萄糖共转运蛋白2在近端肾小管中表达,负责大多数从管状腔中重新吸收过滤的葡萄糖。因此,通过抑制SGLT2,这些药物减少了过滤葡萄糖的重吸收,从而促进了尿葡萄糖排泄。dapagliflozin和empagliflozin还减少了钠的重吸收,并增加了钠向远端小管的递送。这可能会影响几种生理功能,包括但不限于降低心脏的前和后载和交感神经的下调,并降低倾斜度内压,这被认为是由肾小管层次增加的反馈介导的。
整齐地排列,并且可以接受管状和间质互化结构。au @pda-peg-mtx nps组中glomeruli的体积和大小不一致。肾小球中的细胞比正常人增加,细胞外基质的增加比正常情况大,并且肾小管上皮细胞的排列不规则。肾小管的结构尚不清楚。NIR+AU @PDA-PEG-MTX NPS组与对照组相似。在对照组和两个实验组中,肺组织结构相对清晰,整个肺泡结构相对完整,肺泡壁的厚度相对正常,支气管狭窄的程度相对轻。肺泡上皮细胞,嗜酸性粒细胞和淋巴细胞很少浸润
糖尿病肾病(DKD)是终末期肾脏疾病的主要原因。1导致DKD的机制是复杂的,而Tubulointerstitial纤维化是大多数肾脏损伤2的常见途径,也是慢性肾脏疾病的主要病理特征之一。3肾细胞在生理条件下维持间隙基质和相邻组织的体内稳态方面起着重要作用。许多细胞参与肾纤维化过程。微管间质纤维化的主要原因是纤维细胞的激活和扩张,大量细胞外基质(ECM)组件的产生和沉积,肾小管和微毛细管的变化。4,5持续暴露于高葡萄糖(Hg)环境中,肾小管上皮细胞诱导上皮 - 间质转变(EMT),进而导致间质纤维化6