表皮生长因子受体(EGFR)是胶质母细胞瘤(GBM)中最常见的基因,它在肿瘤发育和抗肿瘤免疫反应中起着重要作用。虽然针对EGFR信号通路及其下游关键分子的当前分子靶向疗法尚未显示出GBM中有利的临床结果。虽然肿瘤免疫疗法,尤其是免疫检查点抑制剂,但在许多癌症中都显示出耐用的抗肿瘤反应。然而,携带EGFR改变的患者的临床效率受到限制,表明EGFR信号传导可能涉及肿瘤免疫反应。最近的研究表明,EGFR的改变不仅促进了肿瘤微环境(TME)中的GBM细胞增殖,而且还会影响免疫成分,从而导致免疫抑制细胞募集(例如M2-like TAMS,MDSC,MDSC和TREG和TREG),以及TT和NK细胞的抑制。此外,EGFR的改变上调了免疫抑制分子或细胞因子(例如PD-L1,CD73,TGF- B)的表达。本综述探讨了EGFR改变在建立免疫抑制性TME中的作用,并希望为将靶向的EGFR抑制剂与GBM的免疫疗法相结合提供理论基础。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
Gasdermin(GSDM)蛋白家族包括GSDMA/B/C/D,GSDME(DFNA5)和DFNB59(PEJVAKIN,PJVK)(1)。这些关键分子在刺穿细胞膜,释放免疫因子和诱导细胞死亡方面起着关键作用(1,2)。GSDM穿孔是由caspase和Granzymes(GZMS)介导的,它通过浮游性信号通路触发,并在针对病原体和癌症的免疫防御中持有关键的显性(2)。除DFNB59外,所有保守的蛋白质都包含N末端打孔域和C末端自抑制域(3)。在正常条件下,这些蛋白质通过域相互作用聚集,抑制GSDM的穿孔功能(3)。通过致病或破坏性信号,caspase或GZMS裂解GSDM激活后,将其分为N末端和C末端段(4)。这些片段然后寡聚,在细胞膜中形成毛孔,从而释放了炎性分子和细胞凋亡(4,5)。凋亡(6,7)。它突然表现出来,与其他程序性细胞死亡机制相比,引起了炎症反应的增强(8)。在2015年,发现了caspase-1将GSDMD分割为N末端和C末端结构域,从而揭示了凋亡过程(9)。GSDMD的自由N末端结构域在细胞膜中形成通道,
药物开发需要时间,而且通常无法满足当今医疗保健的需求。这主要是因为将新药推向市场需要很长时间、从头药物开发的成本惊人以及开发过程中的高流失率 ( 1 )。目前对药物开发的估计表明,将新化学实体 (NCE) 开发成实际药物需要超过 12 年的时间和超过 1 亿美元 ( 2 )。即使投入了如此多的资源,也只有不到 2% 的 NCE 能够开发成药物(98% 的流失)。药物开发失败的主要原因是缺乏安全性和有效性 ( 3 )。在进行临床前研究以确定可行性之后,NCE 必须通过严格的 I 期和 II 期试验,才能在临床环境中建立良好的毒理学和药理学特征。少数通过 I 期和 II 期临床试验审查的候选药物将进入 III 期试验,以验证其在大量处于特定疾病不同阶段和合并症的患者中的临床疗效。减轻围绕新药发现和开发的不确定性,并简化临床试验流程是肿瘤学的必需品,因为癌症仍然是全球主要的公共卫生问题。一种可能的解决方案是
由于带注释的样本稀缺,病理性脑损伤在图像数据中的复杂表现对监督检测方法提出了挑战。为了克服这个困难,我们将重点转移到无监督异常检测。在这项工作中,我们专门使用健康数据训练所提出的模型,以识别测试期间未见的异常。这项研究需要调查基于三元组的变分自动编码器,以同时学习健康脑数据的分布和去噪能力。重要的是,我们纠正了先前基于投影的方法中固有的一个误解,该误解依赖于这样的假设:图像内的健康区域在重建输出中将保持不变。这无意中暗示了病变图像和无病变图像在潜在空间表示上存在相当大的相似性。然而,这种假设可能并不成立,特别是由于病变区域强度对投影过程的潜在重大影响,特别是对于具有单一信息瓶颈的自动编码器。为了克服这个限制,我们将度量学习与潜在采样分离。这种方法确保病变和无病变输入图像都投影到相同的分布中,特别是无病变投影。此外,我们引入了一个语义引导的门控交叉跳过模块来增强空间细节检索,同时抑制异常,利用解码器更深层中存在的健壮健康大脑表示语义。我们还发现,将结构相似性指数测量作为额外的训练目标可以增强所提模型的异常检测能力。
类器官通过在体外准确重现组织和肿瘤的异质性,为推动临床前研究和个性化医疗展现出巨大潜力。然而,缺乏标准化的癌症类器官培养方案阻碍了可重复性。本文全面回顾了当前与癌症类器官培养相关的挑战,并强调了该领域最近的多学科进展,特别关注肝癌类器官培养的标准化。我们讨论了导致技术差异的非标准化方面,包括组织来源、加工技术、培养基配方和基质材料。此外,我们强调需要建立可重复的平台,以准确保留母体肿瘤的遗传、蛋白质组学、形态学和药理学特征。在每个部分的末尾,我们的重点转移到原发性肝癌的类器官培养标准化。通过应对这些挑战,我们可以提高癌症类器官系统的可重复性和临床转化,从而使其在精准医疗、药物筛选和临床前研究中具有潜在应用。
恶性肺癌发病率高,5年生存率极差。人类细胞内约80%-90%的蛋白质降解是通过泛素化酶途径进行的,特异性极高的泛素连接酶(E3)在靶蛋白的泛素化过程中起着至关重要的作用,泛素化通常发生在底物蛋白的赖氨酸残基上。不同的泛素化形式对靶蛋白的影响不同,多个短链泛素化残基修饰底物蛋白,是蛋白质降解的有利信号。细胞内蛋白质泛素化与去泛素化之间适应生理需要的动态平衡,有利于生物体的健康。蛋白质泛素化对许多生物学途径都有影响,这些途径的失衡导致包括肺癌在内的疾病。抑癌蛋白因子的泛素化或肿瘤致癌蛋白因子的去泛素化往往导致肺癌的进展。泛素蛋白酶体系统(UPS)是肺癌新型抗癌药物研发的宝库,尤其是针对蛋白酶体和E3s,精准靶向的致癌蛋白泛素化降解可能为肺癌药物研发提供光明的前景;特别是蛋白水解靶向嵌合(PROTAC)诱导的蛋白质降解技术将为肺癌新型药物的研发提供新的策略。
在套细胞淋巴瘤 (MCL) 中,巨噬细胞在肿瘤微环境 (TME) 中的作用最近受到关注,因为它们会影响预后和治疗反应。尽管 MCL 肿瘤组织中的巨噬细胞绝对数量很少,但最近的研究结果显示巨噬细胞水平与预后之间存在关联,这与其他淋巴瘤亚型中观察到的趋势一致。M2 样巨噬细胞由 CD163 等标记物识别,有助于血管生成和抑制免疫反应。接受化学免疫疗法和靶向治疗的 MCL 患者的临床试验强调了高水平 M2 样巨噬细胞的不利影响。来那度胺等免疫调节药物可降低 MCL 相关 CD163 + 巨噬细胞的水平并增强巨噬细胞的吞噬活性。类似地,针对 CD47“别吃我”信号的临床方法与抗 CD20 抗体利妥昔单抗相结合,可增强巨噬细胞活性和对 MCL 肿瘤细胞的吞噬作用。嵌合抗原受体 (CAR) T 细胞等细胞疗法已显示出良好的前景,但仍存在各种挑战,这导致人们对 CAR-巨噬细胞 (CAR-M) 产生了潜在兴趣。当巨噬细胞被招募到 TME 时,它们具有吞噬功能和对微环境变化的反应性等优势,表明当 CAR T 细胞疗法在复杂的 MCL 治疗环境中失败时,它们有可能成为可操纵和可诱导的替代方案。
1 华沙医科大学核医学系,02-091 华沙,波兰;leszek.krolicki@wum.edu.pl(LK);jolanta.kunikowska@wum.edu.pl(JK) 2 巴塞尔大学医院神经外科系,4031 巴塞尔,瑞士;dominik.cordier@usb.ch 3 伯尔尼大学医院 Inselspital 神经内科系,3010 伯尔尼,瑞士;nedelina.slavova@gmail.com 4 精神病学和神经病学研究所神经外科系,02-957 华沙,波兰;henryk.koziara@gmail.com 5 欧洲委员会联合研究中心 (JRC),76125 卡尔斯鲁厄,德国;frank.bruchertseifer@ec.europa.eu (FB); alfred.morgenstern@ec.europa.eu (AM) 6 核医学与放射化学,巴塞尔大学医院,4031 巴塞尔,瑞士 7 伯尔尼与巴塞尔大学神经外科系,4001 巴塞尔,瑞士 * 通信地址:adrian.merlo@bluewin.ch
摘要 表皮生长因子 (EGF) 可诱导非肿瘤大鼠肾成纤维细胞在细胞培养中发生转化表型,这些转化表型是从成年小鼠的许多非肿瘤组织(包括颌下腺、肾脏、肝脏、肌肉、心脏和大脑)中分离出来的。它们与之前描述的从肿瘤细胞中分离出来的转化生长因子 (TGF) 类似,具体如下:它们可通过酸/乙醇提取,并且是酸稳定的低分子量 (6000-10,000) 多肽,需要二硫键才能起作用,并且它们会导致非肿瘤指示细胞的锚定非依赖性生长,而这些细胞在没有它们的情况下不会在软琼脂中生长。从雄性小鼠的颌下腺中对这些 TGF 进行部分纯化,结果表明它们不同于 EGF。与之前描述的细胞外 TGF 不同,但与来自肿瘤细胞的某些细胞 TGF 一样,它们通过 EGF 增强其促进锚定非依赖性生长的能力。颌下腺 TGF 蛋白的等电点接近中性。在 Bio-Gel P-30 上进行色谱分析,然后进行高压液相色谱分析,总纯化率达到 22,000 倍。在 EGF 存在下进行测定时,最纯化的蛋白质在 1 ng/ml 的软琼脂中具有诱导生长的活性。这些数据进一步证明了肿瘤形成可能是由非肿瘤生化过程的定量而非定性改变引起的。我们最近描述了 (1) 从几种肿瘤小鼠组织(包括由莫洛尼肉瘤病毒 (MSV) 转化的成纤维细胞和最初由化学致癌物诱导的可移植膀胱癌)中分离和表征一组低分子量、酸稳定性多肽(称为转化生长因子 (TGF))。这些多肽是可通过酸/乙醇提取的细胞内蛋白质。类似的细胞外转化多肽,称为肉瘤生长因子 (SGF),是由 De Larco 和 Todaro (2) 从培养的 MSV 转化小鼠成纤维细胞的条件培养基中首次分离出来的。最近报道了几种其他细胞外转化多肽,它们来源于人类 (3) 和动物 (4) 来源的肿瘤细胞。所有这些多肽在应用于培养的未转化、非肿瘤指示细胞时都会引起以下一系列变化,这些变化为 TGF 提供了一个操作性定义:(i) 单层细胞密度依赖性生长抑制的丧失;(ii) 单层细胞过度生长;(iii) 细胞形状改变,导致指示细胞呈现肿瘤表型;(iv) 获得锚定独立性,从而能够在软琼脂中生长。未转化的非肿瘤细胞不会在软琼脂中形成逐渐生长的菌落,并且培养细胞的这种不依赖锚定的生长特性与体内肿瘤的生长具有特别高的相关性(5-7)。
