在气候变化中,极端温度、干旱、盐度和重金属毒性等非生物胁迫严重影响植物的生长和生产力,导致形态发育受损并对植物健康产生负面影响(Hasanuzzaman 和 Fujita,2022;Bhardwaj 等,2023)。这些胁迫会导致植物的形态变化,例如芽和根生长减缓、花药开裂不良、花粉活力丧失、花朵掉落增加、花朵受精减少、种子萎缩和灌浆期缩短。此外,叶片衰老、失绿、坏死、灼伤和脱落进一步加剧了对植物生长的不利影响。 ( Saxena 等人,2019 年;Dumanovic ́ 等人,2021 年;Hasanuzzaman 和 Fujita,2022 年;More 等人,2023 年)。为了抵消这些有害影响,植物采用了各种适应和耐受机制。最近的研究集中于揭示植物对非生物胁迫的反应机制。生理干预,例如由脱落酸 (ABA) 信号通路介导的气孔调节、离子稳态和渗透调节,对于植物适应干旱和盐胁迫至关重要( Kuromori 等人,2022 年;Li 等人,2020 年)。此外,活性氧 (ROS) 清除酶和抗氧化系统在减轻热诱导的氧化损伤和促进耐热性方面的作用也已得到阐明(Dumanovic ́ 等人,2021 年;Mittler 等人,2022 年)。激素信号通路与抗氧化防御系统、离子稳态和渗透调节的相互作用也已得到强调(Ramegowda 等人,2020 年;Singhal 等人,2021 年)。全基因组转录组研究为转录因子、microRNA 和应激反应蛋白等应激反应基因提供了宝贵的见解(Liu 等人,2022 年)。CRISPR-Cas9 技术已成功应用于开发抗非生物胁迫作物,这得益于用于设计合适 CRISPR/Cas9 的生物信息学工具
《联合国宪章》第二条第四款禁止在国家关系中“使用武力或进行武力威胁”。北方国家和学者传统上将此条款解释为基于文书的禁令:使用军事武器对于构成使用武力而言是必要的,因此经济制裁绝不可能涉及第二条第四款。相反,南方国家的学者和国家反对这种狭隘的解释,他们认为,由于经济胁迫会产生与传统军事行为一样的灾难性人道主义后果,因此经济制裁应被认定为使用武力。尽管存在这种替代方法,但北方国家对第二条第四款基于文书的解释已被采纳为习惯国际法,根据现行国际法框架,经济胁迫明确不能被归类为使用武力。然而,由于网络攻击威胁日益增加,全球北方开始认识到,在数字化经济和技术进步的时代,对“武力”的传统解释是不够的。近年来,学者和国家越来越多地放弃基于工具的方法,转而采用另一种框架:违反第 2(4) 条的行为应根据国家行动的“规模和效果”而不是所使用的工具来判断。鉴于第 2(4) 条解释的演变,本文通过将新的“规模和效果”框架应用于围绕经济胁迫的传统辩论,为学术研究做出了新的贡献,认为某些经济制裁——既适用于域外又具有全面性——可能构成使用
摘要:在压力或最佳条件下,植物培养了一个特定的共生微生物行会,以增强包括代谢调节在内的关键功能。尽管植物基因型在微生物选择中的作用有充分的文献证明,但该基因型特异性微生物组装在维持宿主稳态方面的潜力仍未得到充分研究。在这项研究中,我们旨在评估与植物增长促进根瘤菌(PGPR)的橄榄基因型对微生物接种对微生物接种的特异性(PGPR),以查看先前与本地或质量微生物的抗压植物是否会在叶子中表现出任何变化。在受控和压力条件下测试了两个突尼斯精英品种,Chetoui(干旱敏感)和Chemleli(耐旱)。叶片样品,以鉴定未靶向的代谢产物。根和土壤样品用于提取使用16S rRNA扩增子测序的细菌群落分析的微生物基因组DNA。分别将分数分析,聚类分析,热图,Venn图和Krona图表应用于代谢和微生物数据。结果表明,在应力和接种条件下,Chetoui品种的叶子代谢组的动态变化。在最佳状态下,PGPR财团引起了敏感变化的代谢模式的明显变化,与在耐旱的品种中观察到的植物化学相一致。这些变化涉及脂肪酸,生育酚,苯酚,甲氧基诺酚,硬霉素,三萜和糖。另一方面,表现出可比代谢谱的化学品种似乎不受应力和接种的影响,可能是由于其耐受能力。微生物在治疗中的分布明显不均匀。测试的幼苗遵循各种特定于选择有益的土壤细菌以减轻压力的策略。仅在两个品种的最佳条件下才检测到一种高度丰富的湿型接种物,这使得植物基因型的水分历史成为塑造微生物群落的选择性驱动器,从而预测大型生态系统中微生物活性的有用工具。
摘要:影响Holm Oak的根腐是伊比利亚半岛高生态和经济损失的原因,强调了发展疾病控制方法的相关性。这项工作的目的是评估由有益的生物(Trichoderma Complex,T-Complex)组成的生物处理的作用,对在两个对比的Holm Oak Ecotyp中感染的Holm Oak幼苗感染了phytophthora cinnamomi,一种被认为是高度易于耐受的霍尔姆oak oak Ecotyp,一种被认为是耐受性的(hu)和另一种被认为是耐受性的。为此,在温室中进行了完整的多因素测试,并监测幼苗以进行生存分析以及形态和生理属性评估。死亡率始于易感性(HU),而不是在耐受性(GR)生态型中,并且由于植物的生态型,生存率显示出不同的趋势。耐受性生态型显示出高生存率和对利用微生物治疗的更好反应。glm表明,治疗之间差异的主要原因是生态型,其次是T-复合和灌溉,并且发现生态型和肉桂疟原虫之间存在弱相互作用。光合作用(a)与蒸腾(TR)之间的线性关系显示,在DR型条件下,在DR型条件下,感染和接种植物的A/TR速率增加。受益的微生物治疗对耐受性生态型的影响更大。对Q的遗传多样性的理解和水应力对生物处理对根腐病的有效性的影响提供了有用的信息,以开发环保疾病控制方法来解决Holm Oak的下降。
几十年来,研究人员一直致力于开发适应性更强、对环境胁迫耐受性更强的改良主要作物。饲用豆科植物因其巨大的生态和经济价值而在世界范围内广泛传播。非生物胁迫和生物胁迫是限制豆科植物生产的主要因素,而苜蓿(Medicago sativa L.)对干旱和盐胁迫表现出较高的耐受性。对苜蓿改良的努力已导致推出了具有高产量、更好的胁迫耐受性或饲用品质等新的农艺重要性状的品种。苜蓿与固氮细菌有高效的共生关系,因此具有非常高的营养价值,而深根系统有助于防止干旱土地的土壤水分流失。与它的近亲苜蓿(Medicago truncatula Gaertn.)不同,苜蓿的全基因组尚未发布,因此现代生物技术工具在苜蓿中的使用具有挑战性。识别、分离和改良与非生物或生物胁迫反应有关的基因,对我们了解农作物如何应对这些环境挑战做出了重大贡献。在这篇综述中,我们概述了高通量测序、非生物或生物胁迫耐受基因的表征、基因编辑以及具有苜蓿改良生物技术潜力的蛋白质组学和代谢组学技术方面取得的进展。
在更广泛的经济安全领域中,一个核心问题是如何有效地打击经济胁迫。与经济安全概念本身一样,经济胁迫也是一个模糊而广泛的术语,其定义因情况而异。例如,七国集团将经济胁迫定义为“试图通过强迫目标国家遵守和遵守来将经济依赖武器化”,这一措辞可以很容易地涵盖不透明的中国胁迫努力,例如针对立陶宛等国家,以及以联合国法律制度为基础的针对伊朗等国家的更广泛的美国金融制裁制度。4 利用经济激励和抑制措施实现战略效果的努力并不是什么新鲜事,尽管它们的现代表现形式具有某些独特的元素。5 从维护国际规则秩序的角度来看,在复杂且相互依存的现代供应链背景下,经济胁迫事件发生频率的稳步上升代表着一种特别令人担忧的趋势,最终有可能破坏全球安全和稳定。6
植物不断遭遇环境胁迫,这些胁迫对其生长发育产生负面影响。为了缓解这些挑战,植物已经开发出一系列适应性策略,包括未折叠蛋白反应 (UPR),这使它们能够应对由各种不利条件引起的内质网 (ER) 胁迫。CRISPR-Cas 系统已成为植物生物技术的强大工具,具有提高植物对生物和非生物胁迫的耐受性和抗性以及通过靶向特定基因(包括与 UPR 相关的基因)来提高作物生产力和品质的潜力。本综述重点介绍了 UPR 信号通路和 CRISPR-Cas 技术的最新进展,特别关注 CRISPR-Cas 在研究植物 UPR 中的应用。我们还探讨了 CRISPR-Cas 在改造 UPR 相关基因以改良作物方面的潜在应用。将 CRISPR-Cas 技术整合到植物生物技术中有望通过生产出具有更强的环境胁迫抵抗力、更高生产力和更优质品质的作物来彻底改变农业。
摘要:植物在遭受非生物胁迫时会产生和积累抗逆物质,这涉及一种蛋白质转化机制,即分解逆境损伤的蛋白质并提供可用的氨基酸。真核生物的蛋白质周转主要由泛素化途径驱动。在蛋白质降解所需的三种酶中,E3泛素连接酶在大多数细胞中起着关键作用,因为它决定了泛素化的特异性并选择要降解的靶蛋白。在本研究中,为了研究OsPUB7(水稻的植物U-box基因)的功能,我们构建了CRISPR/Cas9载体,生成OsPUB7基因编辑个体,并使用基因编辑株系评估对非生物胁迫的抗性。在缺乏T-DNA的T 2 OsPUB7基因编辑无效株系(PUB7-GE)中观察到干旱和盐分胁迫处理的抗逆表型。此外,尽管 PUB7-GE 在 mRNA 表达分析中没有显示出任何显著变化,但它显示出比野生型 (WT) 更低的离子泄漏和更高的脯氨酸含量。蛋白质-蛋白质相互作用分析表明,已知与胁迫有关的基因 (OsPUB23、OsPUB24、OsPUB66 和 OsPUB67) 的表达在 PUB7-GE 中增加,并通过与 OsPUB66 和 OsPUB7 形成 1 节点网络,充当干旱和盐胁迫的负调节剂。这一结果证明 OsPUB7 将成为水稻育种和未来抗旱/非生物胁迫研究的有用目标。
抗性品种的开发 主题:非生物胁迫耐受性 • 基于基因组学的分析水稻非生物胁迫耐受性的策略 • 作物非生物胁迫耐受性的基因组编辑 • 表型技术和基因组编辑以提高资源利用效率 • 资源利用效率育种 • 根系结构在提高作物非生物胁迫耐受性中的作用 • 探索辐射利用效率以提高作物产量 主题:营养品质 • 了解作物最终用途品质性状的遗传基础和改良 • 基因组学辅助育种以增强作物的营养品质性状 • 基因组编辑以增强品质性状 • 从谷物中提取和定量营养成分的分析技术原理 • 微量营养素含量的遗传增强 • 改良品质性状的转基因方法
摘要:III类WRKY转录因子在植物应对多种非生物胁迫和次生代谢中起着至关重要的作用,但WRKY66的进化和功能尚不清楚。本研究对WRKY66同源物进行追溯,发现其经历了基序的获得与丢失以及纯化选择。系统发育分析表明145个WRKY66基因可分为三个主要进化枝(A~C进化枝)。替代率检验表明WRKY66谱系与其他谱系有显著差异。序列分析显示WRKY66同源物具有保守的WRKY和C2HC基序,且平均丰度中关键氨基酸残基的比例更高。AtWRKY66是一个核蛋白,可受盐和脱落酸诱导的转录激活因子。同时,在盐胁迫和脱落酸处理下,由成簇的、规律间隔的、短回文重复序列/CRISPR-相关9(CRISPR/Cas9)系统产生的Atwrky66敲低植物的超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性以及种子发芽率均低于野生型(WT)植物,但相对电解质渗漏(REL)较高,表明敲低植物对盐胁迫和脱落酸处理的敏感性增加。此外,RNA-seq和qRT-PCR分析表明,敲低植物中参与应激反应的脱落酸介导的信号通路中的几个调控基因受到显著调控,表现为基因表达更温和。因此,AtWRKY66可能在盐胁迫反应中起正调控作用,可能参与脱落酸介导的信号通路。