。cc-by-nc-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
理解微观自由度在强烈相互作用的系统的行为是许多物理领域的主要目标,范围从结构镜[1,2]到基本粒子理论[3,4],甚至延伸到量子重力[5,6]。但是,这些系统的第一原则计算通常非常困难,并且需要强大的工具。计算在系统进行相转换时特别具有挑战性,因为可能会出现新的自由度并变得相关。在这种情况下,基本理论必须始终如一地关联这两个阶段,从而描述了从一组自由度到另一组自由度的过渡。对于二阶过渡,系统在所有长度尺度上的行为取决于有限的所谓关键指数。这一问题的许多现代方法中的一种是功能重新归一化组(FRG)[7-11],也称为精确的重新归一化组(RG)或
胰腺癌(PC)和胆道癌(BTC)是恶性胆道狭窄的主要原因。但是,仅通过成像测试来区分良性和恶性胆道狭窄通常是具有挑战性的。胆汁样品可以在内镜逆行胆管造影术(ERCP)中进行内镜下获得,并用于细胞学诊断。ever,据报道,胆汁细胞学对恶性胆道狭窄的敏感性低至6-32%[1]。此外,已经报道了其他内窥镜诊断的其他内窥镜技术,例如使用ERCP,EUS引导的细针吸入(EUS-FNA)和多骨胆管镜检查(POCS)进行病理或细胞学诊断,例如组织采样(EUS引导的细针吸入(EUS-FNA))。但是,这些恶性胆道狭窄的这些方法的诊断精度也仍然不令人满意[2-4]。此外,PC和BTC标准血清标记的灵敏度和特异性(例如CEA和CA19-9)也不足以在良性和恶性胆道狭窄之间提供鉴别诊断[5,6]。最近,由于其生物稳定性并与癌变密切相关,microRNA(miRNA)已被用作癌症生物标志物[7]。miRNA是由18-25个核苷酸组成的简短非编码RNA,它们通过靶向特定的mRNA部分进行转化抑制或降解,从而调节几个生物学过程,包括细胞增殖,迁移,侵袭,存活和转移[8,9]。因此,在PC和BTC诊断中评估胆汁样品中特定miRNA的实用性仍然未知。迄今为止,很少有关于利用胆汁样品用于基于miRNA的PC和BTC诊断的报道,并且已将各种试剂用于miRNA分离[10-14]。胆汁中miRNA的定量可能会克服用ERCP,EUS-FNA和Peroral POC的常规组织诊断中观察到的诊断限制。本研究的目的是评估对胆汁中选定的miRNA与胆汁细胞学结合的定量分析是否可以提供PC和BTC的精确诊断。
缩写:α-SMA,α-平滑肌肌动蛋白;ALP,碱性磷酸酶;ALT,丙氨酸氨基转移酶;ASBT,顶端钠依赖性胆汁酸转运蛋白;ASBTi,ASBT 抑制剂;ATCC,美国典型培养物保藏中心;AUC inf,从给药时间到最后可测量浓度的 AUC 并外推至无穷大;BAs,胆汁酸;BDL,胆管结扎;C4,7α-羟基-4-胆甾烯-3-酮;CA,胆酸;CDCA,鹅去氧胆酸;CK7,细胞角蛋白-7;CMC,羧甲基纤维素;Cyp7a1,细胞色素 P450 家族 7 亚家族 A 成员 1;d,天;DCA,脱氧胆酸;DEGs,差异表达基因;GCDCA,甘氨鹅去氧胆酸; GO,基因本体;H&E,苏木精-伊红;IC50,半数最大抑制浓度;LCA,石胆酸;LC-MS/MS,液相色谱串联质谱法;MCA,鼠胆酸;MCP-1,单核细胞趋化蛋白-1;MDR3,多药耐药蛋白3;基质金属蛋白酶7 (MMP-7),基质金属蛋白酶7;NRC,正常大鼠胆管细胞;NTCP,Na+-牛磺胆酸共转运多肽;OST α /OST β,有机溶质转运蛋白α/β;QWBA,定量全身放射自显影;RNAseq,RNA测序;RT-qPCR,定量实时PCR;SAD,单次递增剂量;t 1/2,终末半衰期;UDCA,熊去氧胆酸;WT,野生型。
肠粘膜免疫系统的基本作用是维持对腔抗原的耐受性,这是通过肠道居住的免疫细胞和由微生物组提供的两向相互作用的大量协调和多层相互作用来实现的。粘膜体液免疫反应(并且主要是分泌IgA)是主机调节分类学组成[1-7]空间组织[8-10]和微生物群的代谢功能[11-13]的主要手段。由共生微生物进行的最重要的母质功能之一是宿主胆汁酸的生物转化(BAS)[14]。BAS是宿主衍生的两亲分子,可作为乳化剂,可促进饮食脂质和脂溶性维生素的溶解和吸收[15]。bas主要使用胆固醇作为前体作为初级碱,然后将其运输并存储在胆囊中,直到后之前将其分泌到十二指肠。大约在分泌到肠道的所有BAS中的95%将在远端回忆[16,17]。在稳态条件下,逃脱这种回收过程的5%的BAS将到达结肠,在那里它们被共生肠道细菌修饰以成为次要BAS。肠道菌群通过不同的酶促反应修饰腔体BA生物化学:deconju-gation,脱氢,脱氢,脱氢,沉积和氧化还原。细菌BA生物转化的第一个限制步骤是甘氨酸或牛磺酸与BAS(deCongugation)的裂解,这是通过细菌胆汁盐羟化酶(BSH)酶进行的。BAS的细菌解偶会阻止BAS通过顶端钠BA转运蛋白(ASBT)的主动转运[18]。人类肠道微生物群的遗传研究表明,所有主要细菌门的成员都具有BSH基因,并且能够进行BA decondongation [19,20]。与脱糖性相反,在企业门的几个含量中(例如,乳酸杆菌科,梭状芽孢杆菌科,乳甲苯性乳甲苯性乳酸菌,浓度)似乎是主要负责的,用于随后的酶促反应[21,22]。此外,肠道菌群可以通过直接影响管腔中共轭BAS的平衡的能力来调节BAS中BAS的合成[23]。疏水性碱基浓度的微摩尔移位可以刺激肠上皮细胞apopto- Sis [24,25],因此BAS的肠肝循环是通过负面反馈机制运行的严格调节过程,该过程通过生理上良性的BA组成和中心含量维持生理上的良性BA组成和中心。最近,BAS被描述为信号分子,它们是核法尼X受体(FXR)和Takeda G蛋白偶联受体(TGR5)的配体[26]。
缩写:α-SMA,α-平滑肌肌动蛋白;ALP,碱性磷酸酶;ALT,丙氨酸氨基转移酶;ASBT,顶端钠依赖性胆汁酸转运蛋白;ASBTi,ASBT 抑制剂;ATCC,美国典型培养物保藏中心;AUC inf,从给药时间到最后可测量浓度的 AUC 并外推至无穷大;BAs,胆汁酸;BDL,胆管结扎;C4,7α-羟基-4-胆甾烯-3-酮;CA,胆酸;CDCA,鹅去氧胆酸;CK7,细胞角蛋白-7;CMC,羧甲基纤维素;Cyp7a1,细胞色素 P450 家族 7 亚家族 A 成员 1;d,天;DCA,脱氧胆酸;DEGs,差异表达基因;GCDCA,甘氨鹅去氧胆酸; GO,基因本体;H&E,苏木精-伊红;IC50,半数最大抑制浓度;LCA,石胆酸;LC-MS/MS,液相色谱串联质谱法;MCA,鼠胆酸;MCP-1,单核细胞趋化蛋白-1;MDR3,多药耐药蛋白3;基质金属蛋白酶7 (MMP-7),基质金属蛋白酶7;NRC,正常大鼠胆管细胞;NTCP,Na+-牛磺胆酸共转运多肽;OST α /OST β,有机溶质转运蛋白α/β;QWBA,定量全身放射自显影;RNAseq,RNA测序;RT-qPCR,定量实时PCR;SAD,单次递增剂量;t 1/2,终末半衰期;UDCA,熊去氧胆酸;WT,野生型。
紫罗兰色红胆葡萄糖(VRBG)琼脂脱水且现成的培养基1-在食物,动物饲料和环境样品中检测和列举肠杆菌科的使用和枚举。2 – C OMPOSITION - TYPICAL FORMULA * ( AFTER RECONSTITUTION WITH 1 L OF WATER ) DEHYDRATED AND READY - TO - USE MEDIUM Peptone 7.0 g Yeast extract 3.0 g Sodium chloride 5.0 g Bile salts No.3 1.5 g Glucose 10.0 g Neutral red 30.0 mg Crystal violet 2.0 mg Agar 15.0 g *The formula may be adjusted and/or supplemented to meet the required performances 标准。3-方法的含量和解释肠杆菌科的解释通常被食品制造商视为卫生指标,因此用于监测采取的预防措施的有效性。这也反映在肠杆菌科作为卫生指标的几种国家和国际标准或标准中。紫罗兰色胆汁葡萄糖(VRBG)琼脂是由摩森植物1设计的,用于枚举肠杆菌科,通过将葡萄糖添加到紫罗兰红胆汁乳糖琼脂中。Mossel等人后来的作品。2,3证明可以省略乳糖,从而导致称为VRBG琼脂的配方。紫罗兰色红胆葡萄糖琼脂,以进行探测和枚举,并采用富集前的步骤,并采用肠杆菌科的MPN技术,当期望寻求的微生物预计需要复苏,并且预计需要的数量低于100次以下或每米级测试。葡萄糖的同化会导致培养基的酸化,因此胆汁盐和中性红摄取的沉淀。ISO 21528-2 5推荐使用倒板技术枚举肠杆菌科,而预计所需的菌落数量为每毫升100毫升或测试样品的每克。肽为细菌生长提供了重要的生长因子;酵母提取物是用于生长刺激的B-VITAMINS复合物的来源。氯化钠保持渗透平衡。培养基依赖于选择性抑制性成分晶体紫和胆汁盐,这些含量抑制了革兰氏阳性细菌的生长以及指标系统葡萄糖和中性红色的生长。肠杆菌科以红色粉红色至红色紫色菌落的生长,周围是红色降水带。非葡萄糖发酵罐(例如,假单胞菌,阿科杆菌,阿尔卡吉尼等)表现出透明的无色菌落。除肠杆菌科以外的一些革兰氏阴性细菌可能会生长,但可能受到覆盖程序的限制。4a -d介质制剂(脱水培养基)悬浮41.5 g在1000毫升冷纯净的水中。热量频繁搅动以完全溶解。不要自压盐,也不要过热。冷却至47-50°C,混合并分布成无菌培养皿。4B- d的介于培养基(准备就绪 - 使用烧瓶 /试管)的液体液化液在100±2°C或温度控制的水浴(100°C)中的高压釜中烧瓶 /管的含量。或者,可以将瓶子或管子放入装有水的罐子中,该水放在热板上并煮沸。在加热之前稍微松开盖,以允许压力交换。冷却至47-50°C,然后将培养基倒入无菌条件下的无菌培养皿中。5-疗程特征脱水的培养基外观绿色紫色,细,均匀,自由流动的粉末溶液和准备好的中等外观紫罗兰,在20-25°C时清除最终pH 7.4±0.2 6- M M M原始物质 - 包装
摘要:胆汁酸 (BA) 是一种重要的甾体分子,在超分子化学、药学和生物医学等多个领域的应用范围正在迅速扩大。本文系统地回顾了胆汁酸在肠肝循环中的运输过程和相关过程。重点介绍了特定或不太特定的胆汁酸转运蛋白及其定位。首先,向读者提供有关胆汁酸特性、其系统流动、代谢和功能的基本信息。然后,详细描述并以示意图形式说明运输过程,逐步从肝脏经胆管移动到胆囊、小肠和结肠;此描述还附有已知参与胆汁酸运输的主要蛋白质的描述。本文还讨论了胆汁酸溢出到系统循环和尿液排泄的情况。最后,该评论还指出了肠肝循环中一些研究较少的领域,这对于 BA 相关药物、前体药物和药物载体系统的开发至关重要。
摘要:胆汁酸 (BA) 是一种重要的甾体分子,在超分子化学、药学和生物医学等多个领域的应用范围正在迅速扩大。本文系统地回顾了胆汁酸在肠肝循环中的运输过程和相关过程。重点介绍了特定或不太特定的胆汁酸转运蛋白及其定位。首先,向读者提供有关胆汁酸特性、其系统流动、代谢和功能的基本信息。然后,详细描述并以示意图形式说明运输过程,逐步从肝脏经胆管移动到胆囊、小肠和结肠;此描述还附有已知参与胆汁酸运输的主要蛋白质的描述。本文还讨论了胆汁酸溢出到系统循环和尿液排泄的情况。最后,该评论还指出了肠肝循环中一些研究较少的领域,这对于 BA 相关药物、前体药物和药物载体系统的开发至关重要。