摘要 - 基于机器学习的嵌入式系统,这些系统在安全 - 关键应用中(例如航空航天和自主驾驶)中所需的系统需要强大,以防止软错误产生的扰动。软误差是现代数字处理器越来越多的关注点,因为较小的晶体管几何形状和较低的电压使电子设备对背景辐射具有更高的敏感性。深神经网络(DNN)模型对参数扰动的弹性在很大程度上是通过模型本身的结构以及所选的数值表示并使用算术精确的。应用诸如模型修剪和模型量化之类的压缩技术来减少内存足迹和部署的计算复杂性时,模型结构和数值表示都会修改,因此,软误差稳健性也会改变。从这个意义上说,尽管DNN模型中的激活功能(AFS)的选择经常被忽略,但它不仅可以预测它们的准确性和训练性,还可以应对可压缩率和数值鲁棒性。本文涉及使用有限的AFS来提高模型鲁棒性对DNN参数扰动的适用性,同时评估了此选择对模型准确性,可压缩性和计算负担的影响。尤其是我们分析了旨在在高光谱图像上执行语义分割任务的编码器完全卷积模型,以在自主驾驶中进行场景理解。部署表征是在AMD-Xilinx的KV260 SOM上进行实验的。索引项 - 稳定性,激活功能,模型组合,边缘计算,语义分割
标准项目 FY-24 项目编号:009-112 日期:2022 年 10 月 25 日 类别:II 1. 范围:1.1 标题:预防射线检查电离辐射危害;完成 2. 参考:2.1 NAVMED P-5055,辐射健康防护手册 2.2 10 CFR 第 20 部分,辐射防护标准 2.3 10 CFR 第 34 部分,工业射线照相许可证和工业射线照相操作的辐射安全要求 3. 要求:3.1 此项适用于所有将射线检查作为其工作一部分的合同。“外国承包商”是指与美国海军东道国签约的承包商,美国海军合同可能在美国政府财产和/或船只上执行。 3.2 每个外国承包商在对美国政府财产和/或船舶进行射线检测时,必须遵守东道国的监管标准。3.3 在工作开始前十四天,以硬拷贝或经批准的可转让媒体的形式向监督人提交一份已填妥的射线照相操作计划工作表(附件 A)的清晰副本(除非监督人另行批准),并在开始射线照相操作前获得批准。3.4 在工作开始前 14 天之前,以硬拷贝或经批准的可转让媒体的形式向监督人提交一份清晰的图表副本,该图表显示边界,其中曝光率不得超过 2 mr/hr(0.02 mSv/hr),或在特殊情况下,任何非限制区域内个人的剂量在任何一个小时内不得超过 2 mrem(0.02mSv)。此外,边界必须满足以下要求:任何公众个体在一个日历年内因放射工作所接受的剂量不得超过 100 mrem (1mSv),不包括 2.1 和 2.2 规定的背景辐射。
在轨道站的运行过程中,对宇航员和宇航员的医疗支持的方法和手段,监控其健康状况正在不断改善,对人本人的能力的了解,有关管理人体适应于变化和经常恶劣环境条件过程的方法的知识。众所周知,在陆地生活中,各种空间影响因素的影响也会在某种程度上遇到 - 低动力,低动力学,背景辐射增加,脱落,隔离等。这就是为什么当前生物医学研究的发展水平使使用获得的结果不仅可以使人们的健康不仅在太空中,而且还可以在地球上保持健康(太空生理学。。。,2016年; Grigoriev,2007年)。Dietrich等。在他们的评论中表明,太空技术会影响地球上许多活动领域,包括全球健康领域。为居住的空间而开发的各种健康研究和技术已适用于陆地使用(Dietrich等,2018)。俄罗斯科学院(IBMP RAS)生物医学问题研究所 - 是俄罗斯领先的太空生物学和医学领域的领先机构。它负责对工作人员的医疗,卫生和卫生支持,以及创建科学设备,以解决医疗支持问题,并在国际空间站(ISS)的俄罗斯俄罗斯国家生物医学研究计划和实验实施俄罗斯国家生物医学研究计划和实验。。。此外,IBMP RAS在医学科学,放射性生物学,工程科学,生物技术等领域进行了跨学科的基础和试点研究。该研究所进行了重要的科学和应用研究,获得了独特的结果并开发了现代设备(Belakovskiy和Samarin,2002,2011; Space Medicine。,2014年)。很明显,研究结果的主要领域是改善宇航员健康和绩效的医疗支持以及返回地球后,但尽管如此,它们中的显着部分对于医疗保健的实施至关重要(Orlov等人(Orlov等人,2014年; Orlov等,2021年)。
项目背景辐射处理在许多欧洲国家中存在主要用于灭菌和生产高级聚合物材料。计划的进一步扩展欧盟增加了贸易,需要通过标准化的质量控制方法和程序严格控制的辐射技术。欧盟和国家当局提出了与医疗保健产品,药品,食品治疗以及辐射处理中进一步发展有关的新标准和法规。支持操作工业伽玛和电子束设施的MSS来引入标准,并确保使用适当的质量控制程序的安全有效利用辐射处理技术,已经进行了多个IAEA TC区域项目; RER/8/017“增强辐射技术的质量控制方法和程序”(2009- 2011),RER/1/011“引入和协调辐射技术的标准化质量控制程序”(2012- 2013年)(2012- 2013年),使用/1/017,使用材料处理的高级辐射技术(2016--2017)和09-17)和09和RERE/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/19对于人类健康,安全,清洁环境和先进的材料”,特别支持协调选定的国家标准ISO 9001,ISO 13485和ISO 11137,以及由欧盟和国家法律法规执行的产品和过程控制措施的实施。范围和自然在过去的这些努力中,RER1021(2020-2023)继续支持质量保证,这对于成功实施辐射处理技术至关重要,因此,在Gamma和Electon Beam Beam Iradiviations in Dosimetry Intravorational bebormison Bootisheration comportions cormissional dosimentry comportions cormistions contimentions coptialsions coptions casparientions cops Intimentions caspas Intimentassients均具有剂量介绍性比较。
在挑战性条件下(例如强背景辐射或复杂的散射环境),具有忠实操作的主动光传感器对于跨越各种域的遥感应用是非常可取的。诸如远程陆地映射,轨道地震学或非侵入性生物医学成像之类的示例还包括探测信号的极端光子饥饿,创造了可能对基于线性光学的传统传感器进行挑战的条件。在这项工作中,我们通过基于非线性光学元件来证明一种新型的传感系统来解决这些挑战,该系统能够同时进行三维成像和激素分析,具有单光子的灵敏度和对各种噪声来源的特殊耐受性。这种非线性光学系统利用量子 - 参数模式分类(QPM),这是一种在光谱重叠的光子上选择性检测单个信号光子的新生技术,它将基于线性光学器件的其他系统产生干扰噪声。这项工作展示了一个基于QPM的成像仪,该成像仪可以可靠地重建高度散射的模糊剂,这些靶标具有毫米深度分辨率,这是由于非线性光学的时间 - picseconds脉冲的传输。利用模式选择性上转换在Niobate波导中,我们展示了耐噪声的成像,其中很少的信号光子嵌入了34倍左右重叠的背景光子中,每个探针脉冲脉冲的背景光子超过100,000倍。本研究为新的检测方式奠定了基础,该模式可能适用于各种应用。引入了基于QPM的成像仪后,其传感能力的维度被扩展到包括振动测量值,以解决由表面振动引起的时变强度波动。我们表明,可以通过计算振动光谱作为光门控的振动光谱来进行深度分辨的振动分析。使用振动签名作为一种对比机制,我们在检测强散射后面的振动目标时证明了20 dB的改善。
抽象音乐是一种无形的振动或多种频率的波浪,它可以被生活世界感受到,并且能够在人类的认知和行为上带来某些变化。它可以在思想中产生这种影响,仅化学药物就不会。根据字符串理论家,我们整个宇宙的每个粒子都处于恒定运动和特定频率(宇宙微波背景辐射)的振动中,我们的母亲地球(Schumann Resonance,7.83 Hz)也及其生物体也是如此。根据尼古拉·特斯拉爵士的说法,“如果您想在宇宙中找到秘密,请在能量,频率和振动方面思考。”波浪及其频率可能是建设性的或破坏性的。有了这个概念,各种音乐和声音被用作建设性波或治愈频率来治愈各种疾病。在我们的古代经文中,如萨玛·韦达(Sama Veda)和甘达瓦·韦达(Gandharva Veda)(例如,这些类型的康复的证据)。当时,使用Acharya Charaka和Acharya Sushruta的音乐疗法提到了Mana Vikara的治疗方法。现在,在神经退行性障碍,心理功能障碍,更好的认知和记忆等领域正在研究音乐疗法。根据世界卫生组织的最新报告,大约十亿人口患有各种神经退行性疾病,其中5000万人患有癫痫病,阿尔茨海因纳和其他dimensia遭受了2400万。科学家,研究和医生正在通过应用非侵入性音乐疗法进行彻底的研究,以治愈这些患者。再次,在其他报道中,谁表明,每八人中有一个人或全世界9.7亿人患有焦虑,创伤,恐惧,危机和危急状况引起的各种精神疾病。尽管近几十年来,各种研究都热切地致力于破译音乐的奥秘以治愈某些疾病。甚至引起突触神经塑性的信号通路的生物化学机制仍在研究中。
上下文。宇宙射线(CR)通量以及进入系外星的大气的氢通量可以改变所述大气的组成。在这里,我们在大气上方呈现CR和氢通量。为此,我们研究了3D多流体洋化型 - drodynalnic(MHD)的天文合间结构。目标。我们旨在使用四种不同的模型:流体动力(HD)和理想的MHD单流体模型以及两种情况下的多流体模型,包括来自室内介质的中性氢气流(ISM),包括流体动力(HD)和理想的MHD单流体模型以及多流体模型(ISM)。在多流体模型中的Cr通量和系外环境中的电离速率也显示出来。方法。使用3D Cronos代码对天然圈进行建模,而LHS 1140B处的CR通量是使用1D和3D随机银河CR(GCR)调制代码计算的。最后,使用ATRIS代码估算大气电离和辐射剂量。结果。表明,终止(TS)的3D多流体位置与3D理想单点流体HD病例中的3D多流体位置明显不同。cr通量与使用3D调制代码计算的方法完全不同,并在所讨论的系外行星上显示了本质上未调制的频谱。利用这些光谱,得出了LHS 1140 B大气中的电离速率和辐射暴露。结论。表明,多流体MHD TS距离与其他模型的距离明显不同,尤其是基于理想的单流体HD的分析方法。必须从3D多流体MHD模型中取出TS,Astropause和Bow震动距离,以正确确定CR通量。此外,由于天体微小,外部球星被淹没在ISM的中性氢气中,这将影响超球星的气氛。对于避免对GCR强度的不切实际估计,也必须使用3D进行GCR调制的3D方法。由于大气化学过程,因此,传播光谱特征和生物签名信息的推导很大程度上取决于大气电离,我们的结果强调,可靠的GCR诱导的背景辐射信息是强制性的,尤其是对于LHS 1140.
本研究描述了现场实验,在配备无线电等离子体波接收器的空间物理卫星与其他空间物体结合时测量甚低频 (VLF) 等离子体波 (1-30 kHz),以了解次级空间物体在另一颗卫星附近的快速通过是否可以被检测到。地球电离层中的物体在其轨道运动后会形成一个离子密度稀疏区域,这可以作为物体探测的基础。2022 年,现场实验尝试在太空无线电等离子体传感器快速穿越次级空间物体尾流期间将这些离子密度稀疏检测为宽带 VLF 等离子体波噪声。这是为了回答空间物体是否可以通过其轨道运动在地球电离层中引起的等离子体离子密度扰动来探测。加拿大空间物理卫星 CASSIOPE 启动了其无线电等离子体物理包,并在 CASSIOPE 与次级物体之间预测已知的近距离接近之前、期间和之后的时间记录了电场数据。 CASSIOPE 旨在测量地球的极光、粒子和场,其偏心轨道为 330 x 1200 公里,可偶然采集地球电离层中的各种等离子体状态。此外,对于太空领域意识社区来说,该轨道定期穿过人口密集的轨道壳层,例如 Starlink、Iridium、OneWeb 和其他太空物体,从而定期提供合相机会来尝试测量等离子体振荡。在合相之前,CASSIOPE 从其交叉偶极子无线电接收仪 (RRI) 收集了电场测量值,该仪器可检测到跨度约为 1-35 kHz 的等离子体电场振荡。2022 年初,共描述了 35 次合相。当物体穿过或靠近次级物体的预测尾流时,四次合相表现出 VLF 宽带噪声能量,范围从离子回旋频率 (~36 Hz) 到下混合谐振频率 (~5-6 kHz)。然而,我们发现与次级物体最接近时间的相关性从弱到强。其他会合中,次级物体从 CASSIOPE 后面经过,而 RRI 未穿过次级物体的尾迹,其波能并未超过环境背景辐射 - 这与空间物体离子声马赫锥外的等离子体将表现出未受干扰的等离子体行为的预测一致。虽然空间物体尾迹中的密度稀疏似乎与 VLF 范围内的会合有微弱的关联,但这些发现表明,应从等离子体波的角度来检查检测到的波能与次级物体运动之间的空间和时间分离,其中波能相对于空间物体尾迹几何约束之外的地磁场线传播。
日期:2024 年 1 月 23 日(1)版本 1.0 产品:三菱化学先进材料下述库存形状: Acetron ® MD POM-C 食品级 Acetron ® VMX POM-C 食品级 Ertacetal ® C POM-C 食品级 Ertacetal ® POM-C C/3WF 自然色 自然色、黑色(90)和蓝色 50 Ertalon ® 6 PLA PA6 食品级 自然色 Ertalon ® 6 SA PA6 食品级 自然色 Ertalon ® 66 SA PA66 食品级 自然色 Ertalyte ® PET-P 食品级 自然色、黑色和蓝色 50 Ertalyte ® TX PET-P 食品级 自然色 Ketron ® 1000 PEEK 食品级 自然色和黑色 Ketron ® TX PEEK 食品级 Ketron ® VMX PEEK 食品级 PE 500 食品级 自然色和彩色 Techtron ® HPV PPS 食品级(蓝色、绿色、红色、红棕色、黄色) TIVAR ® 1000 防静电 UHMW-PE 食品级 TIVAR ® 1000 ASTL UHMW-PE 食品级 TIVAR ® 1000 EC UHMW-PE 食品级 TIVAR ® 1000 UHMW-PE 食品级 自然色和彩色 TIVAR ® Cestidur UHMW-PE 食品级(蓝色、绿色、红色、黄色) TIVAR ® Cleanstat UHMW-PE 食品级 黑色 TIVAR ® DS 食品级 UHMW-PE 黄色 TIVAR ® HOT UHMW-PE 食品级 TIVAR ® HPV UHMW-PE 食品级 TIVAR ® MD UHMW-PE 食品级 蓝色 TIVAR ® VMX UHMW-PE 食品级 据我们所知,我们在此确认,在原材料生产过程中或上述坯料制造过程中均未有意引入放射性同位素。所用原材料并非核废料,也不来自核事故或辐射事故/事件附近。由于无法合理预期上述物质的存在,三菱化学先进材料公司并未通过测试系统地检查其库存形状中是否存在上述物质。该材料的放射性与正常背景辐射无明显差异。Acetron ® 、Ertacetal ® 、Ertalon ® 、Ertalyte ® 、Ketron ® 、Techtron ® 和 TIVAR ® 是三菱化学先进材料集团的注册商标。所有声明、技术信息、建议和意见仅供参考,并非旨在且不应被视为任何类型的销售保证或销售条款。但请读者注意,三菱化学先进材料公司不保证此信息的准确性或完整性,客户有责任测试和评估三菱化学先进材料公司产品在任何特定应用或成品设备中的适用性。 1 此声明在 12 个月后或监管或成分发生变化时失效。如有需要,请索取新声明。 2 “有意引入”是指“故意用于材料配方,以促进制造或提供特定特性、外观或质量”。
上下文。斧头夸克掘金的存在是轴突场的潜在结果,该结果为量子染色体动力学中的电荷结合奇偶校验违规提供了一种解决方案。除了解释物质抗逆点非对称性的宇宙学差异以及可见的 - 黑暗 /ω可见的比率外,这些复合材料的紧凑型物体还可以通过与普通的Baryonic Matter相互作用来代表潜在无处不在的电磁背景辐射。,我们对局部网络的受约束宇宙学模拟(慢)的群内培养基环境中的轴夸克掘金 - 巴里氏菌相互作用进行了深入分析。目标。在这里,我们旨在通过推断出来自轴突夸克nugget-Cluster-Cluster Gas Itsptrotions的热和非热发射光谱来对银河系簇环境中的电磁对应物进行上限预测。方法。我们使用缓慢的模拟分析了161个模拟星系簇的大型样本中轴夸克掘金的发射。这些集群分为150个星系簇的子样本,以五个质量箱为单位,范围为0。8至31。7×10 14 m⊙,以及11个跨识别星系簇的观测。,我们通过假设所有暗物质由轴夸克块组成,研究了Z = 0的红移,在当前阶段的星系簇中的暗物质 - 巴里氏物质相互作用。结果。19 GHz和νT∈[3。97,10。99]×10 10 GHz。结论。将所得的电磁特征与每个星系簇中的热bremsstrahlung和非热宇宙射线(CR)同步器发射进行了比较。我们进一步研究了模仿WMAP,PLANCK,EUCLID和XRISM望远镜的可观察范围的单个频带,用于最有前途的跨识别星系簇,这些星系簇载有轴突Quark Nugget nuggets发射的可检测到的特征。我们观察到在低能和高能频率窗口中的正值,在该窗口中,热和非热轴夸克掘金发射的发射可以显着有助于(甚至超出)频率(甚至超出)频率的发射(甚至超出),最高为νTt t t t≲3842。如果单个簇的Cr同步加速器发射足够低,则发现可以观察到Axion Quark金块的发射特征。导致发射过量的参数中的退化使得在指出正轴夸克nugget多余的特定区域的预测方面具有挑战性;但是,基于此暗物质模型,预期的总星系簇发射的总体增加。轴夸克掘金构成4。在低能量状态下的总星系簇发射的80%的占3842的低能状态。 19 GHz,用于选择跨识别的星系簇。 我们提出,在寻找斧头夸克掘金发射标志时,福纳克斯和处女群体代表了最有前途的候选人。 我们模拟的结果表明,如果可以充分地将其签名与ICM辐射完全分离,则可以在观察结果中检测出星系簇中的轴夸克掘金过量。占3842的低能状态。19 GHz,用于选择跨识别的星系簇。我们提出,在寻找斧头夸克掘金发射标志时,福纳克斯和处女群体代表了最有前途的候选人。我们模拟的结果表明,如果可以充分地将其签名与ICM辐射完全分离,则可以在观察结果中检测出星系簇中的轴夸克掘金过量。该模型提出了对暗物质组成的有前途的解释,并有可能通过观察结果来验证这种结果,但我们提出了进一步的变化,旨在完善我们的方法。我们的最终目标是确定在不久的将来提取的斧头夸克掘金的电磁对应物。