在 ESC/BSG 系统中,冷却气体(氦气)的漏流被测量为夹紧性能的标准:大量的 BSG 漏流意味着晶圆未正确夹紧,因此冷却气体未到达晶圆。相反,少量的漏流代表晶圆夹紧良好且冷却效率高。在这种情况下,20 sccm 或以上的氦气流量代表夹紧彻底失败以及工具故障。图 2 显示在“A”和“B”型载体上制备的样品晶圆的冷却气体漏流。在所有施加电压下,弯曲程度较高的晶圆的 BSG 流量最高,漏流值已达到最大值 20 sccm。但是,只要背面冷却气体压力较低,较高电压条件就会消除弯曲对 BSG 流量的影响。换句话说,需要将 BSG 压力降低至约 10 Torr 以下才能夹住弯曲的晶圆,这会导致背面冷却系统的边缘性更严格,并且等离子蚀刻等高温工艺中晶圆过热的可能性更高。
简介:月球背面地震仪 (FSS) 最近被选为 NASA PRISM(月球表面有效载荷和研究调查)计划的一部分,计划于 2024 年或 2025 年发射,它将向薛定谔陨石坑运送两台地震仪(均已通过 InSight 火星任务的飞行验证 [1])。垂直甚宽带 (VBB) 地震仪是有史以来最灵敏的飞行地震仪 [2],而短周期 (SP) 传感器是可用于太空应用的最灵敏、最成熟的紧凑型三轴传感器 [2]。FSS 是一个自给自足的有效载荷,具有独立的电源、通信和热控制,可在漫长的月夜中生存和运行,其寿命将比商业运载着陆器更长,并提供能够回答关键科学问题的长期地震实验。
Jeff 在半导体封装领域拥有超过 25 年的经验,在被 Applied Materials 收购后,他领导着 Tango 产品组。他最初在 Semitool 担任工艺工程师,专攻电镀和湿法清洗,从封装行业起步。Semitool 被 Applied Materials 收购后,他的职业生涯转型为产品管理,然后是业务管理,负责支持 Applied 封装部门的电镀和 PVD 系统。
1农业科学与自然资源学院,Carrera de Medico de Medico san Francisco de Quito University(USFQ),Quito 170157,Ecuador 4 Campus Cumbay A Campus Cumbay A,生物医学研究所Mgutierrererererereinoso@hotmail.com@hotmail.com(M.A.A.A.A.G.G.-R.-R.-R.--R.-R.-R.-R.-R.-R.--R.-R.-R.-R.-R.-R.-R.-R.-R.-R.-R.-R.-R.-R.-R.-R..-R.-R.-R.-R.-R.--RE.A..G.-RE.A..G.-RES; pmaponte@usfq.edu.ec(p.m.a. div>); herrerosgm@gmail.com(m.g.-h.);电话。 div>: +351-243-767(Ext。330)(M.G.-H。)
1癌症研究计划,Rajiv Gandhi生物技术中心,Trivandrum,喀拉拉邦695014,印度; bijeshgeorge@rgcb.res.in(B.G. ); mukundan@rgcb.res.in(p.m.p. ); aswathym@rgcb.res.in(A.M.P. ); amjeshr@rgcb.res.in(R.A.)2研究生学位课程,Manipal高等教育学院,Manipal 576104,印度3宾夕法尼亚州州立大学医学院,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州立大学医学院血液学 - 肿瘤学系。 kleitzel@pennstatehealth.psu.edu(K.L. ); alipton@pennstatehealth.psu.edu(A.L。) 4美国黎巴嫩黎巴嫩退伍军人事务中心,美国宾夕法尼亚州17042; suhail.ali@med.va.gov 5医学系血液学和肿瘤科,新泽西州新泽西医学院,美国新泽西州纽瓦克,美国新泽西州07103; oas26@njms.rutgers.edu(O.S. ); rameshwa@njms.rutgers.edu(p.r.) 6美国德克萨斯州安德森癌症中心的乳房医学肿瘤学系,美国德克萨斯州77030,美国; ghortoba@mdanderson.org 7人类和分子遗传学系,弗吉尼亚联邦大学医学中心,弗吉尼亚州里士满,弗吉尼亚州23298,美国 *通信:rakeshkumar@rgcb.res.in(R.K.); mrpillai@rgcb.res.in(M.R.P.) †同等贡献。1癌症研究计划,Rajiv Gandhi生物技术中心,Trivandrum,喀拉拉邦695014,印度; bijeshgeorge@rgcb.res.in(B.G.); mukundan@rgcb.res.in(p.m.p.); aswathym@rgcb.res.in(A.M.P.); amjeshr@rgcb.res.in(R.A.)2研究生学位课程,Manipal高等教育学院,Manipal 576104,印度3宾夕法尼亚州州立大学医学院,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州立大学医学院血液学 - 肿瘤学系。 kleitzel@pennstatehealth.psu.edu(K.L.); alipton@pennstatehealth.psu.edu(A.L。)4美国黎巴嫩黎巴嫩退伍军人事务中心,美国宾夕法尼亚州17042; suhail.ali@med.va.gov 5医学系血液学和肿瘤科,新泽西州新泽西医学院,美国新泽西州纽瓦克,美国新泽西州07103; oas26@njms.rutgers.edu(O.S. ); rameshwa@njms.rutgers.edu(p.r.) 6美国德克萨斯州安德森癌症中心的乳房医学肿瘤学系,美国德克萨斯州77030,美国; ghortoba@mdanderson.org 7人类和分子遗传学系,弗吉尼亚联邦大学医学中心,弗吉尼亚州里士满,弗吉尼亚州23298,美国 *通信:rakeshkumar@rgcb.res.in(R.K.); mrpillai@rgcb.res.in(M.R.P.) †同等贡献。4美国黎巴嫩黎巴嫩退伍军人事务中心,美国宾夕法尼亚州17042; suhail.ali@med.va.gov 5医学系血液学和肿瘤科,新泽西州新泽西医学院,美国新泽西州纽瓦克,美国新泽西州07103; oas26@njms.rutgers.edu(O.S.); rameshwa@njms.rutgers.edu(p.r.)6美国德克萨斯州安德森癌症中心的乳房医学肿瘤学系,美国德克萨斯州77030,美国; ghortoba@mdanderson.org 7人类和分子遗传学系,弗吉尼亚联邦大学医学中心,弗吉尼亚州里士满,弗吉尼亚州23298,美国 *通信:rakeshkumar@rgcb.res.in(R.K.); mrpillai@rgcb.res.in(M.R.P.) †同等贡献。6美国德克萨斯州安德森癌症中心的乳房医学肿瘤学系,美国德克萨斯州77030,美国; ghortoba@mdanderson.org 7人类和分子遗传学系,弗吉尼亚联邦大学医学中心,弗吉尼亚州里士满,弗吉尼亚州23298,美国 *通信:rakeshkumar@rgcb.res.in(R.K.); mrpillai@rgcb.res.in(M.R.P.)†同等贡献。
本教程将帮助分析师就背面减薄和抛光要求做出决策,并有望消除许多相关的误解和假设。许多人都听过我们这个领域的分析师和科学家将样品制备称为“黑魔法”,这是因为他们不了解样品制备的复杂性。这导致人们忽视了模块、封装、芯片尺寸和材料成分的几乎无限组合,包括金属合金、环氧树脂和填料、玻璃、芯片粘接、玻璃纤维、陶瓷、硅树脂等。由于各层热膨胀系数 (CTE) 不匹配,以及需要以相同的预期表面光洁度抛光不同的界面,情况变得更加复杂。去除很大一部分芯片基板通常会影响封装的稳定性。正确规划整个背面分析策略是一项要求,但这项要求经常被忽视,从而导致项目失败,正如后面章节中所示。
摘要 本研究开发了用于三维集成电路 (3D-IC) 的背面埋入金属 (BBM) 层技术。该技术在每个芯片背面的大片空白区域引入用于全局电源布线的 BBM 层,并与芯片正面布线并联。电源 (V DD ) 和地 (V SS ) 线的电阻因此而降低。此外,由于 BBM 结构埋入 Si 衬底中并具有金属-绝缘体-硅结构,因此可充当去耦电容。因此,引入 BBM 层可以降低电源传输网络的阻抗。3D-IC 的 BBM 层制造工艺简单,并且与后通孔硅通孔 (TSV) 工艺兼容。利用该工艺可以在 CMOS 芯片(厚度:43 µm)背面埋入由电镀 Cu(厚度:约 10 µm)组成的 BBM 层,并通过直径 9 µm 的 TSV 将 BBM 与芯片正面布线相连。 关键词 三维集成电路(3D-IC),背面埋入金属(BBM)层,硅通孔(TSV),供电网络 I. 引言 采用硅通孔(TSV)的三维集成电路(3D-IC)技术[1]–[5]是生产先进、高速、紧凑和高功能电子系统的有效方法。然而,堆叠多个芯片会导致电路设计的电源完整性问题。例如,由于可用于电源和地线的 TSV 数量有限,3D-IC 中的 IR 压降会增加。此外,在 3D-IC 中同时切换堆叠芯片时,会产生很大的同时切换噪声(di/dt 噪声)。这种同步开关噪声会在电源输送网络 (PDN) 中产生不可预测的电压变化,从而导致系统故障。为了解决这一电源完整性问题,不仅必须在电路板/中介层级降低 PDN 的阻抗,还必须在芯片级降低 PDN 的阻抗,并提高电源输送的可靠性。先前的研究提出了一些降低芯片级 PDN 阻抗的方法。第一种方法是加宽电源线/地线。这种方法非常简单,但由于线路资源有限,难以应用。
表格列表................................................................................................................................ix