膀胱膨胀是一种具有挑战性的外科手术,专门提供了泌尿科泌尿外科。因此,实验和临床研究集中在膀胱的组织工程上。1这些研究主要涵盖了膀胱组织的体外扩张,并评估它们在膀胱重建中的使用。2-4膀胱壁的组织工程涉及进行活检,扩展细胞,将其播种在合成或天然基质上,并将细胞矩阵复合物植入宿主中。5分别报道了成人组织和胎儿组织替代物的实验用途,以分别报道了膀胱不足或故障。 6-9然而,这些成年和胎儿细胞种群的相互作用尚未得到充分研究。我们以前已经证明,胎儿膀胱平滑肌细胞(SMC)在播种后早早从外植体中出现。然而,成人膀胱SMC的人口加倍时间(PDT)和S相比例比胎儿衍生的细胞短,这表明对这些细胞进行了初步研究
1。Frangoul,H。等。exagamglogene自动赛,用于严重的镰状细胞疾病。n Engl J Med 390,1649–1662(2024)。2。忘记,B。G。胎儿血红蛋白的遗传持久性的分子基础。ann。N. Y. Acad。 SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。N. Y. Acad。SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。SCI。850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。850,38–44(1998)。3。Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。KLF1在英国HPFH中驱动胎儿血红蛋白的表达。血液130,803–807(2017)。4。Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。NAT COMUM 6,7085(2015)。5。Martyn,G。E.等。近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。血液133,852–856(2019)。6。Martyn,G。E.等。自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。nat Genet 50,498–503(2018)。7。Frati,G。等。CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。8。Anzalone,A。V。等。搜索和重新固定基因组编辑,无需双链断裂或供体DNA。自然576,149–157(2019)。9。Coleman,M。B.等。am。J. Hematol。42,186–190(1993)。 10。 Chen,P。J.等。42,186–190(1993)。10。Chen,P。J.等。Chen,P。J.等。g伽玛A伽马(β+)胎儿血红蛋白的遗传持久性:g伽玛-158 c-> t在顺式中与-175 t-> c c gamma-lobin基因的突变会导致G Gama-- gamma基因的增加导致G Gama-Globobin的增加。通过操纵细胞决定因素的编辑结果来增强质量编辑系统。Cell 184,5635-5652.E29(2021)。 11。 Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Cell 184,5635-5652.E29(2021)。11。Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Ravi,N。S.等。通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。Elife 11,E65421(2022)。12。Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Kim,H。K.等。预测人类细胞中主要编辑指南RNA的效率。nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。13。Nelson,J。W.等。设计的Pegrnas提高了主要的编辑效率。NAT生物技术40,402–410(2022)。14。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。核酸Res 50,1187–1197(2022)。15。Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Lee,J。等。prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。nat Commun 14,1786(2023)。16。Antoniou,P。等。基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。nat Commun 13,6618(2022)。17。Pavani,G。等。通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。血液Adv 5,1137–1153(2021)。18。Everette,K。A.等。在体内造血干细胞的体内质量编辑促进小鼠植入后镰状细胞疾病表型。nat Biomed Eng 7,616–628(2023)。19。Peterka,M。等。利用DSB修复以促进有效的同源性依赖性和 - 独立的质量编辑。nat Commun 13,1240(2022)。20。Magnani,A。等。对镰状细胞疾病的同种异体移植后混合嵌合体患者进行了广泛的多系数分析:对基因治疗的造血和植入阈值的见解。Haematologica 105,1240–1247(2020)。21。Sun,Y。等。 在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Sun,Y。等。在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。在小鼠中耐用基因校正的肺部干细胞的体内编辑。科学384,1196–1202(2024)。22。Doman,J。L.等。噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。单元格186,3983-4002.E26(2023)。23。Wimberger,S。等。同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。nat Commun 14,4761(2023)。24。Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Yan,J。等。用内源性的小RNA结合蛋白改善原始编辑。自然628,639–647(2024)。25。Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。26。核酸res。Brinkman,E。K.,Chen,T.,Amendola,M。&Van Steensel,B。通过序列痕量分解对基因组编辑的易于定量评估。42,E168(2014)。 27。 Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和42,E168(2014)。27。Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和Brusson,M。等。新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。mol the核酸32,229–246(2023)。28。Gaudelli,N。M.等。腺嘌呤基础编辑者的定向演变,活动增加和
1。鲁哈尼医院临床研究开发部儿科,阿米尔科拉儿童非通信疾病研究中心,巴布尔医学科学大学,伊朗,巴布尔医学科学大学2。 Babol医学科学大学学生研究委员会,伊朗Babol 3。 助产士和生殖健康部,伊朗Babol卫生研究所的卫生研究中心社会决定因素4. Amirkla儿童非传染性疾病研究中心儿科,Babol医学科学大学,伊朗Babol 5. 生物统计学和流行病学系,伊朗巴布尔卫生研究所的卫生研究中心社会决定因素6. 妇科与妇产科系,伊朗Babol,Babol医学科学大学Rouhani医院临床研究开发部门7. Ayatollah Rouhani医院Ayatollah Rouhani医院的研究开发部 鲁哈尼医院临床研究开发部儿科,阿米尔科拉儿童非通信疾病研究中心,巴布尔医学科学大学,伊朗,巴布尔医学科学大学9. 鲁哈尼医院临床研究开发部门放射科,医学院,巴布尔医学科学大学医学院,伊朗,伊朗鲁哈尼医院临床研究开发部儿科,阿米尔科拉儿童非通信疾病研究中心,巴布尔医学科学大学,伊朗,巴布尔医学科学大学2。Babol医学科学大学学生研究委员会,伊朗Babol 3。助产士和生殖健康部,伊朗Babol卫生研究所的卫生研究中心社会决定因素4.Amirkla儿童非传染性疾病研究中心儿科,Babol医学科学大学,伊朗Babol 5.生物统计学和流行病学系,伊朗巴布尔卫生研究所的卫生研究中心社会决定因素6.妇科与妇产科系,伊朗Babol,Babol医学科学大学Rouhani医院临床研究开发部门7.Ayatollah Rouhani医院Ayatollah Rouhani医院的研究开发部鲁哈尼医院临床研究开发部儿科,阿米尔科拉儿童非通信疾病研究中心,巴布尔医学科学大学,伊朗,巴布尔医学科学大学9.鲁哈尼医院临床研究开发部门放射科,医学院,巴布尔医学科学大学医学院,伊朗,伊朗
糖尿病是全球最常见的慢性疾病之一,约有5.37亿20-79岁的成年人患有该疾病。这是一种全球流行病,发病率迅速上升。传统的糖尿病治疗方法在实现长期疾病控制方面的功效有限。近年来,骨髓衍生的单核细胞(BMMNC)自体输注已成为一种新型有效的治疗方法,用于治疗自身免疫性1型糖尿病(T1DM)。bmmnc包含两种重要类型的干细胞,骨髓来源的造血干细胞(BMHSC)和骨髓衍生的间充质干细胞(BMMSC),目前在T1DM的处理中独立或协同使用。在这篇综述中,我们总结了糖尿病患者(包括1型,2型和继发性糖尿病)和与糖尿病相关并发症的患者中有关BMMNC,BMHSC和BMMSC输注的临床数据。研究表明,骨髓干细胞的自体输注是安全有效的,具有广泛用于糖尿病患者的潜力。
逐渐耗尽。此外,它还逐渐消耗海马中的热休克转录因子1,从而对成年海马神经发生产生负面影响。此外,不仅Piezo2-Piezo2 Crosstalk在本体感受性的初级传入终端和由于丢失的Piezo2引发的Huygens同步而逐渐逐渐破坏了ALS,但Piezo2-Piezo1 crosstalk在Peripery上也破坏了。Syndecans,尤其是神经系统中的Syndecan-3,是维持此压电串扰的关键参与者。syndecan-3的检测到的电荷改变变体可能会促进压电串扰的损害,以及对运动神经元和海马的基于质子的信号的进行性损失。kCNA2的变体还可以促进
早产(<34 周):早产期的胎儿心率尚未得到广泛研究。虽然在产前阶段有充分的证据支持使用计算机化 CTG 分析(Dawes Redman 标准)来评估酸血症的风险,但目前尚无既定的产时管理分类。众所周知,在妊娠早期,减速更常见于没有缺氧的正常现象。同样,在妊娠约 30 周之前,通常没有周期,因此不是干预的指征。这必须与感染或炎症反应的背景相平衡,因为感染或炎症反应通常会引发早产并使胎儿更容易缺氧。
先兆子痫 (PE) 是一种妊娠期多系统高血压疾病,是现代产科中最具挑战性的谜团之一。尽管 PE 早在几个世纪前就被发现并影响到全世界多达 8% 的妊娠,但其发病机制、诊断和筛查仍然知之甚少且存在争议。1,2 这是很成问题的,因为它仍然是产妇和新生儿发病率和死亡率的主要原因之一。各种风险评估方法包括识别众所周知的产妇风险因素,如年龄、体重指数 (BMI)、生育次数、多胎妊娠、种族、低社会经济地位、个人和家族 PE 史、血栓形成倾向和先前存在的疾病;高血压、糖尿病和慢性肾病,以及推荐的筛查测试,如在所有产前检查时进行常规血压监测。3 但是,尚未设计出可用于常规筛查的理想的经济有效的预测标志物组合。
时期,持续8小时的阴道流体排放持续,并在过去2小时内伴有下腹部和背部疼痛。她没有先前的产前护理接触,也没有补充铁和叶酸。她以前的所有交付都是正常的,没有检测到严重的异常。在检查时,她表现出稳定的生命体征,苍白的结膜,一个26周大小的妊娠子宫,阳性心脏活动,湿的会阴和一个子宫颈扩张至3 cm,并带有eff effacement。超声评估显示,一个单个活的宫内胎儿,短颈椎,恢复的头部且没有可测量的液体。住院8小时后,她提供了一个1.1公斤的死产雌性胎儿,颈部超延伸和短颈椎,但没有其他粗大异常(►图。1和2; ►视频1)。由于宗教原因,家庭不允许对婴儿进行高级检查,例如尸检。该医院没有其他调查,例如MRI和X射线检查。母亲
胎儿听觉系统在妊娠中期甚至更早的时候就开始发挥作用。现有数据显示,胎儿可以对母亲的声音和不同类型的音乐(包括声乐和器乐)做出反应。接收和传输声波,然后识别并保留这些听觉刺激的一些记忆的能力可能是我们需要了解的最重要的感官发育里程碑之一。不幸的是,我们仍然没有足够的证据来证明产前声音模拟的确切作用和时间。需要进行方法论上强有力的随机对照试验,并采用严格设计的干预措施和标准化的报告措施。我们可能需要比较不同持续时间和类型的音乐(声音)干预。至少,这些干预措施可以改善母胎关系和以家庭为中心的结果。任何神经发育改善的证据都将是重要的科学/医学进步。在某些情况下,例如新生儿戒断综合征,新出现的证据表明,早期宫内音乐疗法干预是有帮助的;这些发现为开发新的治疗工具以增强高危胎儿的神经发育带来了希望。考虑到产前音乐接触可能对胎儿和新生儿产生积极影响,我们需要对宫内神经感觉组织进行仔细的研究并进行长期跟踪。关键词:胎儿、母亲的胎心监护参数、音乐疗法、新生儿行为、新生儿神经系统、新生儿、怀孕、节奏、声音、言语。新生儿 (2024):10.5005/jp-journals-11002-0102
本研究提供了对产前骆驼心脏形态法的解剖学说明。为此,从Maiduguri Central屠宰场收集的不同胎儿中随机获得了15个正常的新鲜心脏。根据其体重和冠状长度,将胎儿分为三个不同的生长周期,即第一个(2-4个月),第二(4 -7个月)和第三(7-10个月)。严重地观察到产前dromedary心脏,其底座是锥状的,底座和几乎尖锐的顶点。心膜下血血管与怀孕的每个季度显示相应的发育。心脏重量在第二个生长期间没有显着增加(p> 0.05),而在第三个生长期间观察到极大的增加(p <0.001)。在第二个生长期间,产前dromedary心脏的尺寸显着增加(p <0.05),而在所有胎儿中,在第三个生长期间观察到了极大的增加(p <0.001)。这一增加表明,在产前dromedary的第三个生长期间,心脏的胚胎发生更多。得出的结论是,在产前dromedary的顶端的后边缘长度高的长度高于前边界基底。