了解软细胞发育的机制及其在35植入中的作用对于改善农场动物繁殖至关重要,但由于缺乏36个研究模型而受到阻碍。在这里我们报告说,化学鸡尾酒(FGF4,BMP4,IL-6,XAV939和37 A83-01)可实现从头推导和牛的长期培养,并具有长期的牛外胚膜内胚层38细胞(BXENS)。转录组和表观基因组分析证实了BXENS的身份,39表明它们是早期牛植入植入术胚胎的低成质细胞谱系。40我们表明,Bxens有助于维持牛ESC的干性,并防止它们从41个分化中。在存在信号鸡尾酒的存在下,在发育中的植入前胚胎中也促进了培养细胞的生长和42个e培培养。43此外,通过牛Esc和TSC的Bxens的3D组装,我们开发了一个44个改进的牛胚泡结构(牛胚泡),类似于胚泡。这项研究中建立的45个牛Xens和类囊体代表了可访问的体外模型,可用于46了解牲畜物种中的低纤维细胞发育并提高生殖效率。47
摘要 在哺乳动物发育过程中,左心室和右心室分别来自被称为第一和第二心脏区的早期心脏祖细胞群。虽然这些群体已在非人类模型系统中得到广泛研究,但由于获取原肠胚期人类胚胎的伦理和技术限制,它们的鉴定和体内人体组织研究受到限制。人类诱导多能干细胞 (hiPSC) 因其已证实能够分化成所有胚胎胚层的能力而成为模拟早期人类胚胎发生的一种令人兴奋的替代方案。在这里,我们描述了 TBX5/MYL2 谱系追踪报告系统的开发,该系统允许识别 FHF 祖细胞及其后代,包括左心室心肌细胞。此外,我们使用基于寡核苷酸的样本多路复用的单细胞 RNA 测序 (scRNA-seq),在两个独立的 iPSC 系中广泛分析了 12 个时间点的分化 hiPSC。令人惊讶的是,我们的报告系统和 scRNA-seq 分析显示,使用基于小分子 Wnt 的 2D 分化方案,FHF 分化占主导地位。我们将这些数据与现有的小鼠和 3D 心脏类器官 scRNA-seq 数据进行了比较,并证实了我们 hiPSC 衍生的后代中左心室心肌细胞 (>90%) 占主导地位。总之,我们的工作为科学界提供了一种强大的新遗传谱系追踪方法以及正在经历心脏分化的 hiPSC 的单细胞转录组图谱。
由Joop Vermeer教授领导的植物分子和细胞生物学的实验室正在招募一名大多数。该位置可从2025年5月开始。这个由SNSF资助的职位持续了2年,可以选择额外的一年。VermeerLab研究了使用横向根形成作为模型的细胞间通信如何适应新器官的发出。最近,我们已经建立了胸膜大黄蜂作为一种新模型,以研究横向根发育过程中的空间适应反应。该项目旨在解解在侧根形成过程中内胚层去分化的基础机制。与博士生一起,您将使用CRE-Lox介导的细胞标记,多光子显微镜,SCRNASEQ(与Bert de Rybel教授,PSB,Ghent,Ghent)和CRISPR-CAS9介导的基因组工程。目标是更好地了解具有更复杂根系的物种中根分支的网络。我们使用并开发遗传和分子工具来操纵信号传导是特定的细胞层,即在多个尺度,转录组学,蛋白质组学,组织学和植物生理学上的高分辨率和实现现象,以了解多种植物物种中根分支的调节。要求: - 植物分子/细胞生物学的博士学位(或即将获得的) - 至少1个作者出版物(包括Biorxiv) - 愿意申请资金的意愿 - 熟练英语(口头和书面) - 对大师级学生的兴趣 - 对大师级学生的兴趣 - 以下几个或以下几个领域的经验:
摘要:母乳(BRM)不仅是营养供应,而且还包含各种各样的细胞。据估计,人乳中多达6%的细胞具有间质干细胞的特征(MSC)。可用的数据还表明,这些细胞是多能的,并且能够自我更新和与其他单元的分化。在这篇综述中,我们比较了不同的特征,例如CD标记,分化能力和从人类母乳(HBR-MSC)与人骨髓(HBMSC),沃顿果冻(WJMSC)和人脂肪组织(HADMSC)的干细胞(HBR-MSC)(HBMSC)(HBMSC)(HBMSC)(HADMSC)进行了比较。文献综述表明,人类母乳衍生的干细胞专门表达一组细胞表面标记,包括CD14,CD31,CD45和CD86。重要的是,确定了一组CD13,CD29,CD44,CD44,CD105,CD106,CD146和CD166的标记物,在四个干细胞来源中很常见。WJM-SC,HBMSC,HADMSC和HBR-MSC有效地分化为中胚层,外胚层和内胚层细胞谱系。HBR-MSC在分化为神经干细胞,神经元,脂肪细胞,肝细胞,软骨细胞,骨髓细胞和心肌细胞的能力使这些细胞成为了再生药物中的干细胞来源,而从常用使用的bone bone Marrowsective conceptive则隔离了干细胞。,尽管自养母乳衍生的干细胞是哺乳期女性的可访问来源,但母乳可以被视为具有高分化潜力的干细胞来源,具有任何道德问题。
自 1961 年首次发现骨髓来源的多能干细胞以来,干细胞研究取得了长足进步 [ 1 ]。干细胞是一种独特的细胞,能够通过有丝分裂不断复制,从而形成更多的细胞。该过程会产生两种不同的细胞类型:一种会进化为特定细胞类型,另一种则保留自我更新的能力 [ 2 ]。干细胞大致可分为三类:诱导多能干细胞 (iPSC)、胚胎干细胞 (ESC) 和成体干细胞 (ASC) [ 3 ]。由于 iPSC 和 ESC 能够转化为三个胚层:外胚层、中胚层和内胚层,因此它们被归类为多能干细胞 (PSC)。2006 年,Kazutoshi Takahashi 和 Shinya Yamanaka 通过使用病毒载体引入 Oct4、Sox2、Klf4 和 c-Myc 等特定转录因子,成功将小鼠体细胞转化为 iPSC [ 4 ]。此后,人们使用各种方法将不同类型的小鼠和人类体细胞重新编程为 iPSC [ 5 ]。这种重新编程人类细胞的创新方法引起了科学和医学领域的极大兴趣。iPSC 作为多能细胞来源,为人类 ESC 提供了一种替代方案。诱导多能干细胞的一个显著优势是它们来源于可以非侵入性获得的体细胞。这些细胞携带个体的遗传特征,可以降低免疫排斥的风险 [ 6 ]。现代医学领域对基于 iPSC 的疗法的关注度正在提高。它们在疾病建模、药物筛选和再生医学中的应用正在呈指数级增长 [ 7 ]。iPSC 因其自我更新能力和分化为所有人体细胞类型的能力而在疾病建模中发挥着关键作用。这使得它们成为创建各种疾病模型以供研究的理想选择 [ 8 – 10 ]。患者特异性 iPSC 在制定有针对性的治疗策略和药物开发方面特别有价值。此外,来自正常细胞和患病细胞的 iPSC 可以分化为神经元、肝细胞、心肌细胞等,以评估毒性和副作用,这是治疗分子开发的关键因素 [11]。在再生医学中,iPSC 用于修复或再生受损或退化的组织。这是通过在实验室中从 iPSC 创建器官组织并将其移植到受伤区域来实现的。这种疗法有望用于治疗造血系统疾病、肌肉骨骼损伤、脊髓损伤和肝损伤等疾病 [ 12 – 14 ]。已经开发出各种用于创建 iPSC 的技术,例如使用逆转录病毒或慢病毒进行基因转导和化学诱导。然而,生成 iPSC 的过程通常很慢且效率不高,啮齿动物细胞需要大约 1-2 周,人类细胞需要 3-4 周,成功率通常较低。此外,通过检查菌落形态来评估 iPSC 的质量容易出现人为错误,这是一个重大挑战,在进行进一步的实验或治疗用途之前必须解决这一问题。尽管在提高 iPSC 培养的效率和速度方面取得了进展,但该过程仍然耗费资源,因此需要开发自动化系统以最大限度地减少错误并增强 iPSC 分析。最近,人工智能 (AI) 技术,包括机器学习 (ML) 和深度学习 (DL),已被用于增强再生疗法。这些 AI 驱动方法的实施可以改进
摘要 - 可构造的对象操纵是一个充满挑战的研究主题,它引起了对机器人领域的日益兴趣,因为已经出现了解决此问题的新方法。到目前为止,文献中的大多数提出的方法都集中在形状控制上。被忽略了应用于物体的应变,因此排除了操纵脆弱产品的大部分工业应用,例如橡胶和塑料物体的脱胚层或食物的处理。这些应用需要在准确性和仔细操纵之间进行权衡,以保留操纵对象。在本文中,我们提出了一种方法来最佳控制线性和平面变形对象的变形,同时还最大程度地减少对象的变形能。首先,我们修改了最初为线性软机器人控制开发的框架,以使其适应可变形的物体机器人操作。为此,我们将问题重新制定为一个优化问题,其中考虑对象的整体形状,而不是仅专注于对象的位置和方向的尖端。然后,我们在成本函数中包含一个能量项,以找到在达到所需形状的同时最小化操纵物体中潜在的弹性能量的解决方案。对于高非线性问题的解决方案众所周知,很难找到对局部最小值的敏感性。我们定义了连接对象的已知初始和最终配置并顺序解决问题的中间最佳步骤,从而增强了算法的鲁棒性并确保解决方案的最佳性。然后使用中间最佳配置来定义机器人的终端效果轨迹,以使对象从初始配置变形为所需的配置。索引术语 - 可通知的对象操纵,机器人技术,形状控制,优化,轨迹生成
脊椎动物通过两种不同的骨化模式(内膜内和内侧骨术),从三个不同的起源(神经rest,近去中胚层和侧板中胚层)形成其骨骼组织。由于近期中胚层同时会产生膜内和内软骨内骨,因此据认为会引起骨基因生成剂和骨质造基因生成剂。但是,在人类骨骼发育过程中,尚不清楚是什么指导近去中胚层衍生的细胞在不同的骨骼元素中朝着这些不同的命运。要回答这个问题,我们需要实验系统来概括中胚层介导的膜内和内软骨内骨化过程。在这项研究中,我们旨在开发一个基于人类的人体内骨内骨化过程的人类多能干细胞(HPSC)的系统。我们发现,hPSC衍生的近二胚层衍生物的球体培养物会根据刺激产生骨化剂或骨核培养基。前者在小鼠肾胶囊中诱导的膜内骨骼和后者的软骨骨膜。转录pro填充支持以下观点:骨骼特征富含膜内骨状组织。因此,我们开发了一个概括膜内骨术的系统,并通过控制HPSC衍生的副型中胚层衍生物的细胞命运来诱导两种不同的骨化模式。©2023,日本再生医学学会。Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
纤维板层癌 (FLC) 是一种罕见但致命的癌症,主要发生在年轻人中。目前尚无已知的有效治疗方法,尽管似乎有几种有希望的治疗方法正在开发中。遗传学研究证实,几乎所有 FLC 肿瘤都具有由融合基因 (DNAJB1-PRKACA) 编码的融合蛋白标记 (DNAJB1- PRKACA);它目前被接受为 FLC 的诊断标准。几个研究小组已经建立了患者来源的异种移植 (PDX) FLC 模型,使用免疫功能低下的动物作为宿主,并使用患者组织样本(肿瘤或腹水)作为 PDX 衍生类器官的主要来源。这些 FLC 类器官由 FLC 上皮、内皮祖细胞和星状细胞组成。CRISPR/Cas9 被用作基因编辑技术来修改成熟肝细胞以获得表达融合基因和/或与 FLC 相关的其他突变基因的离体 FLC 样细胞。尽管这些模型模拟了部分但不是全部 FLC 特征,但使用这些模型进行药物筛选在确定临床上有用的治疗方法方面已被证明无效。将 FLC 与正常成熟的内胚层细胞谱系进行比较的遗传研究表明,FLC 并非与肝细胞共享遗传特征,而是与胆管树干细胞 (BTSC) 亚群共享遗传特征,这些肝/胰腺干细胞/祖细胞始终存在于胆管树中的胆管周围腺体 (PBG) 中,是肝脏和胰腺形成和出生后再生的干细胞来源。因此,预计 BTSC 模型(而不是肝细胞模型)可能更有用。在这篇综述中,我们总结了各种 FLC 模型的现状及其特点、应用和局限性。它们提供了了解这种致命疾病的原因和特征的机会,并且可以从中确定有效的治疗方法。
图2。感官任务期间的大脑电生理学。功率频谱密度(PSD)显示了四个不同的感觉任务,与活动(橙色)和非活动(灰色)行为状态进行了比较。a,视觉任务 - 房间灯打开的5秒钟的块(“灯”)在黑暗中以5秒(“灯”)交错。在低频振荡范围(此处为14-16Hz)和宽带光谱变化(此处捕获在65-150Hz)中的原始电压迹线中,信号变化在视觉上是显而易见的,这些范围都在人类中显示在人类中与局部神经元人口活性相关的5、6。b,体感增强任务-3S触觉刺激(抚摸左晶须,前和后肢和躯干)与5s的休息块交织在一起,没有口头输入。PSD。c,言语加强任务-3s言语加固,说“好女孩Belka”,每个街区都与5s安静的街区交织在一起。没有身体接触。psd从前胚层回到。d,言语和体感增强 - 5S同时增强块,在该区域中,考官提供同时赞美(“好女孩Belka!”),并用目光接触轻轻触摸脸的左侧,与5s休息时间交织在一起。pSD来自前胚膜前回的pSD。用于分析,在整个实验中,平均PSD对每个任务块的PSD进行了归一化。在每个任务块中为每个频率范围量化的平均归一化功率。1)。使用签名的r 2公制的任务相关变化进行了比较,该r 2公制比较活动性和不活动行为状态(可能范围为-1至1),如右中所示。所有报告的r 2在p <10-5时均为显着(未配对的t检验,对通道数量校正了Bonferroni)。请注意,对于这些PSD的生成,数据是共同的平均参考(参见扩展数据图
抽象的胃结构是胚胎发育的关键过程,是形成三线蛋白圆盘所必需的。这是囊泡细胞的分化和重新分布,形成三个胚胎层,这些胚胎将产生不同的功能组织(外胚层,中胚层和内胚层)。这种重组是通过涉及整个胚胎的特定细胞组的高度协调运动而发生的。Telest Medaka(Oryzias latipes)被选为实验动物模型。在该物种中,胃结构与Epibolia工艺同时发生。在此期间,细胞从动物极向植物极迁移,导致胚胎轴的形成,这是建立脊椎动物身体计划的基础。对表皮过程中发生的形态发生过程知之甚少。但是,与YAP家族成员一样,已经描述了某些要素的重要性。这些蛋白质是转录调节剂,从培养基接收信号和机械刺激,并将它们与遗传信号整合在一起。这是细胞正确迁移到胚胎中线的必要条件。如果这些信号受到放松管制,则可能无法正确发展胃,甚至可能会产生致命的影响。要更多地了解YAP在胃肠道中的作用,我们将研究YAP下游基因的参与(AFAP12,AKAP12B,EFS,EFS,GLIS2B,MARCKSL1A/B,ROCK2B,Synaptopodin和ved),在cytoskelet cytoskelectal重新组织中与细胞粘附和互动的互动过程中。为此,CRISPR-CAS9系统用于生成每个基因的敲除突变体。这种基因组编辑机制是一种根据细菌和古细菌的天然适应性免疫防御系统而适应的工具。该工具由两个组成部分组成:SGRNA,与基因组的靶序列相匹配的短片段和Cas9核酸内切酶,它们在同一位置引起双链DNA断裂。之后,细胞修复DNA的影响区域,导致基因组中的永久修饰。要执行数据分析,我们使用Stata统计软件。初步数据显示了AFAP12,MARCKSL1,VED和ROCK2B的研究中的特殊结果。在这些情况下,控制和敲除之间的表观进展似乎有所不同。