胚胎干细胞(ESC)来自胚泡的内部细胞质量,类似于该组织的功能,但缺乏形成所有胚外结构的能力。MESC是瞬态细胞群,表达了2细胞(2C)胚胎的高水平转录本特征,并被鉴定为“ 2细胞类似细胞”(2clcs)。先前的研究表明,在重新引入早期胚胎后,2CLC可以有助于胚胎和胚外组织。大约1%的MESC从多能MESC动态过渡到2Clcs。然而,哺乳动物胚胎的稀缺性对整体细胞的分子表征构成了重要挑战。迄今为止,以前的研究探索了将多能细胞重编程为全能细胞的各种方法。虽然对维持ES多能性的分子调节网络有很好的了解,但多能ESC将重编程重新编程为整体细胞的过程以及对全能调节的相关分子机制仍然很熟悉。本综述综合了对ESC重编程为2CLC的调节途径的最新见解,探索了由转录调节剂,小分子和表观遗传变化调节的分子机制。目的是为研究人员的领域构建一个理论框架。
对乙酰氨基酚(N-乙酰氨基酚)是世界上使用最广泛的非处方药。尽管对孕妇来说是安全的,但人们担心对乙酰氨基酚的致畸作用。本研究旨在观察对乙酰氨基酚对发育胚胎的致畸作用。使用鸡胚胎,将胚胎孵化 48 小时,然后注射 3 种浓度的对乙酰氨基酚,即 10 ppm、15 ppm 和 20 ppm。对照组和治疗组由 3 个可育胚胎重复组成。然后,将胚胎在孵化器中再次孵化 48 小时。通过观察任何发育变化来描述性地进行数据分析。结果表明,对乙酰氨基酚导致头部扩大和心脏水肿。暴露于浓度为 15 ppm 和 20 ppm 的对乙酰氨基酚会影响鸡胚的形态,尤其是头部的形成,并破坏血管生成过程和正常心脏的形成,在较高浓度下会导致出血和水肿。关键词:异常;鸡胚;发育;对乙酰氨基酚。简介对乙酰氨基酚(对羟基乙酰苯胺)是乙酰氨基酚(N-乙酰氨基酚)的通用名称,是一种非处方 (OTC) 药物,用作镇痛药和解热药(Sharma 和 Mehta,2014 年)。除了疼痛和发烧之外,它还常用于缓解头痛,可单独使用或与其他偏头痛药物(如咖啡因和非甾体抗炎药 (NSAID))联合使用(Pini 等人,2008 年),并用于治疗新生儿动脉导管未闭(Ohlsson 和 Shah,2020 年)。它是世界上最常用的药物之一(Moore 和 Moore,2016 年;Becker,2015 年)。超过 50% 的孕妇在怀孕期间使用对乙酰氨基酚(Lupattelli 等人,2014 年;Werler 等人,2005 年)。现有指南建议在怀孕期间以尽可能低的剂量和尽可能短的时间来使用对乙酰氨基酚,如果需要长期使用,建议咨询健康专业人士(欧洲药品管理局,2019 年;食品药品监督管理局,2019 年)。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。
crispr screens in IPSC-Derived neurons reveal principles of tau protests avi J. Samelson 1 , Nabela Ariqat 1 , Justin McCetney 2,3,4 J. Travaglini 6 , Victor L. lam 7 , Darn Goodness 1 , Gay Dixon 1 , Emily Marzette 1 , Julianne Jin 1 , Ruilin Tiian 1 , Eric tse 1,8 , Rome Abskharon 9,Henry Pan Lawrence 3,10,Jason E. Geswicki 1,7,David Eisenberg 9,11,Nicholas M.因此12,Daniel R. Southworth 1,8,John D. Gross 7,Li Gan 5<美国加利福尼亚州旧金山大学神经退行性疾病DIV加利福尼亚大学旧金山分校,定量生物科学研究所(QBI),美国加利福尼亚州旧金山,美国3。加利福尼亚大学SAN
在2016年,新西兰政府设定了雄心勃勃的目标,即在2050年到2050年 - 捕食者免费2020年(PF2050,以下称),消除主要的侵入性掠夺性哺乳动物。这些物种包括三个芥末:雪貂(Mustela putorius furo),Stoats(M。Erminea)和鼬鼠(M. nivalis);三只大鼠:船只(Rattus rattus),挪威大鼠(R. Norvegicus)和Kiore(R。Exulans)和刷尾巴鼠(Trichosurus vulpecula)(Russell et al。2015;欧文斯2017)。在这个全国范围内消除了侵入性掠食者,从未尝试过,并且传统工具包被认为是不可能的。因此,如果要成功,我们需要大量的技术,运营和社会进步(Owens 2017; Tompkins 2018; Murphy等人。2019; Peltzer等。2019;罗斯等。2020)。
器官是从胚胎干细胞培养物,诱导多能干细胞或从器官分离的成年干细胞的三维。肠道器官是从器官分离的成年干细胞产生的第一个类器官。这首先是由于以下事实:多能干细胞在肠上皮中大量存在,必须确保每2至3天完全更新其上皮层。从成年干细胞中培养的肠道类器官,包括在小型活检中,再现肠上皮的几个功能,包括其分泌,吸收功能或其障碍功能。从成人组织分离的干细胞中肠道器官的培养也使从患者培养“病理”器官成为可能。已经表明,这些培养物保持在患有克罗恩氏病或出血性重凝性患者或来自癌症组织时的癌症表型的患者的患者中,例如炎症表型。因此,肠道器官的培养物代表了生理学和肠道病理生理学研究的强大研究模型,但也是治疗性筛查的工具。对肠道器官培养的未来应用包括临床体外试验,个性化医学方法以及促进上皮再生。
粘附药物输送系统(MDDS)代表了一种通过口服途径(例如颊,舌下和牙龈区)管理药物的创新方法。这些系统利用天然或合成聚合物确保对粘膜表面的长时间粘附,从而可以扩展和受控的药物释放。几个因素影响粘附的有效性,包括聚合物的亲水性,分子量和pH和水分水平等环境因素。mdds可以采取各种形式,包括片剂,膜,斑块,烤肉和凝胶,每种都提供不同的药物释放曲线,例如立即,持续或控制。这些系统通过避免首次代谢来增强药物生物利用度,使其对低口服生物利用度或需要靶向递送的药物特别有益。尽管MDD提供了改善的患者合规性和治疗效果,但它们仍然面临诸如刺激,口味关注和唾液稀释作用之类的挑战,这可能会影响药物稳定性。尽管面临这些挑战,但MDD仍具有在各种医疗应用中推进药物输送技术的巨大希望。本综述彻底研究了粘附药物输送系统的机制,优势,局限性和未来前景。
项目标题 /滴定项目在体外分化人类胚胎茎celle在体细胞中 /étatdu项目< / div> < / div>
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2024年10月18日发布的此版本中显示在版权所有者中。 https://doi.org/10.1101/2024.10.15.618593 doi:Biorxiv Preprint