开放存取本文采用知识共享署名4.0国际许可证,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接,并表明是否做了更改。本文中的图片或其他第三方资料包含在文章的知识共享许可证中,除非在资料的致谢中另有说明。如果资料未包含在文章的知识共享许可证中,且您的预期用途不被法定规定允许或超出了允许的用途,您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
*通讯作者:新泽西州普林斯顿大学化学系Alessio Amaolo,美国,美国,美国,美国,电子邮件:alessioamaolo@princeton.edu。https://orcid.org/0000-0002-9973-6872 pengning Chao,马萨诸塞州剑桥,马萨诸塞州马萨诸塞州马萨诸塞州数学系,美国马萨诸塞州,美国马萨诸塞州02139https://orcid.org/0000-0001-9287-9515 Thomas J. Maldonado和Alejandro W. Rodriguez,普林斯顿大学电气和计算机工程系,普林斯顿大学,普林斯顿大学,NJ 08544,NJ 08544,美国,Maldonado@-mail:maldonado@-mail@maldonado@crinceton.ed.ed.ed.ed.ed.ed.ed.ed.ed.ed。 arod@princeton.edu(a.w.Rodriguez)。https://orcid.org/0009-0005-0465-193X(T.J. Maldonado)Sean Molesky,蒙特利尔PolytechniqueMontréal,QuébecH3T 1J4,加拿大蒙特利尔市Polytechnique h3T 1J4,加拿大蒙特利阿尔,蒙特利克尼,eanean.molesky@polymmtky.caca。 https://orcid.org/0000-0003-3575-5166https://orcid.org/0009-0005-0465-193X(T.J. Maldonado)Sean Molesky,蒙特利尔PolytechniqueMontréal,QuébecH3T 1J4,加拿大蒙特利尔市Polytechnique h3T 1J4,加拿大蒙特利阿尔,蒙特利克尼,eanean.molesky@polymmtky.caca。https://orcid.org/0000-0003-3575-5166
摘要 算法预测价值观和偏好的准确性不断提高,这增加了人工智能技术能够作为无行为能力患者的代理决策者的可能性。继 Camillo Lamanna 和 Lauren Byrne 之后,我们将这项技术称为自主算法 (AA)。这种算法将挖掘医学研究、健康记录和社交媒体数据来预测患者的治疗偏好。开发 AA 的可能性引发了一个伦理问题:在患者未签发医疗授权书的情况下,AA 或亲属是否应该充当代理决策者。我们认为,在这种情况下,与赋予家庭代理人决策权的标准做法相反,AA 应该拥有唯一的决策权。这是因为 AA 可能更善于预测患者会选择哪种治疗方案。它也能更好地避免偏见,从而以更以患者为中心的方式做出选择。此外,我们认为这些考虑因素凌驾于患者与亲属的特殊关系的道德重量之上。
Cristina 是不同公共和私人机构的技术和多样性顾问。她是西班牙政府经济事务和数字化转型部西班牙语自然语言处理专家委员会和 Red.es 性别办公室的成员,并领导阿拉贡政府智库 Covid19 的技术领域。2018 年 10 月,她被《Business Insider》评为 Twitter 上值得关注的 30 位西班牙科技界人士之一,并被选为 100 强女性之一。2019 年,《Emprendedores》杂志将她评为西班牙 9 位最具影响力的年轻企业家之一,2020 年 12 月,《Merca2》杂志将她评为西班牙数字领域 20 位最具影响力的人物之一。她是 TEDxZaragoza2018 和 BBVA 节目“Aprendemos Juntos”的演讲者。
磁共振成像(MRI)是目前医院环境中最有价值的诊断成像工具。其在中枢神经系统成像(即大脑和脊柱)中的应用尤为重要。MRI 最常见的临床应用之一是在患者被诊断出患有原发性癌症(例如肺癌)后对大脑进行成像以检测转移性肿瘤。脑转移性肿瘤的存在与否对于确定癌症扩散和分期至关重要,可用于确定后续治疗策略。然而,解释大脑的磁共振(MR)图像是一项耗时且需要经验的任务。一旦癌症患者发生脑转移,就需要对脑病变进行放射治疗(放射外科手术或全脑放射治疗)。
锂离子电池是当今电力平台的重要组成部分。锂离子电池在所有便携式电子设备、电动和混合动力汽车以及电网规模的储能系统中都有广泛的应用。[4] 但由于电池行业需要近 50% 的可用锂资源,因此锂离子电池能否大规模生产用于电网应用尚不确定。[5f] 此外,锂离子在非质子电解质中的电导率有限以及安全性较差也可能对其大规模利用造成问题。这些缺点促使研究人员寻找替代锂离子电池的新型储能技术,其中可充电金属空气电池成为一种有前途的新型电能存储技术(图 1)。通常,金属空气电池(Li 或 Na)比锂离子电池具有更高的理论比能,这使得金属空气电池系统对混合动力和混合动力电动汽车具有吸引力和实用性。 [6] 以金属为阳极、氧为阴极活性材料的电化学电力装置具有最高的能量密度,因为后者不存储在装置内部,而是可从环境中获取。锂空气电池(LAB)的理论比能量与汽油的理论比能量相当。[5c,7] 空气阴极性能限制了电池容量,危及 LAB 技术的商业成功。首先,无论是碱性还是酸性水性电解质,在阴极反应过程中都会消耗溶剂。其次,由于孔口/开口的堵塞导致放电不完全。[8] 因此,提高 LAB 性能的可能途径之一是阴极材料结构,[9] 它可以保持活性锂离子和氧气的传输,并且可以填充大量氧还原反应(ORR)的产物而不会堵塞孔隙。在燃料电池的气体扩散电极 (GDE) 领域中,双孔材料有望提高能量容量。[10] 第三,空气阴极性能下降。空气阴极提供大部分电池能量,因此电池电压降最大。[11] 放电过程中 LiO 2 的积累产生了混合产物,充电时的高电压导致溶剂分解,同时过氧化锂也发生还原。[12] 氧溶解度和扩散速率成为影响电池能量容量的关键因素。使用氧溶解度高和氧扩散率高的电解质可提高阴极容量。[8,13]