出版商免责声明。印刷前电子出版对于科学的快速传播越来越重要。因此,《Haematologica》以电子方式发布已完成定期同行评审并被接受出版的手稿早期版本的 PDF 文件。此 PDF 文件的电子发布已获得作者批准。印刷前电子出版后,手稿将经过技术和英语编辑、排版、校对并提交给作者最终批准;手稿的最终版本将出现在期刊的常规期刊中。适用于期刊的所有法律免责声明也适用于此制作过程。
诱导治疗按照下表中的详细说明进行,最多进行 2 个周期。 第一周期后白血病持续存在的患者可以接受第二周期的诱导化疗 诱导治疗期间完全缓解或完全缓解但中性粒细胞或血小板恢复不完全的患者应进行巩固治疗(参考 NCCP 方案 00887 Quizartinib 和中等剂量阿糖胞苷巩固治疗) 对于进行造血干细胞移植 (HSCT) 的患者,应在开始预处理方案前 7 天停用 Quizartinib。对于血液学恢复良好且移植物抗宿主病 (GVHD) ≤ 2 级的患者,可在移植完成后根据白细胞计数 (WBC) 并由主治医生酌情决定是否恢复用药,无需在 21 天内开始新的全身 GVHD 治疗,并遵循剂量建议
引言 在全球人口不断增长和气候变化的时代,粮食安全是人类生存和繁荣的主要目标之一 (Sekaran et al. , 2021)。作物改良是实现这一目标的核心战略之一。它包括提高产量和提高植物可食用部分的质量。事实证明,通过增加蛋白质和植物次生代谢物等必需成分的浓度来提高食品质量,对植物本身和食用这些植物的人类都有益 (Sahu et al. , 2022)。研究人员通过实验证实,作物改良与蛋白质含量提高之间存在相关性 (Chakraborty et al. , 2010; Zhang et al. , 2018a; Akbar et al. , 2023)。粳稻品种的蛋白质含量与氮和钾含量之间存在高度显著的正相关性 (Zhang et al. , 2018a)。同样,在
被诊断患有 KMT2A 重排 ( KMT2A -r) 急性淋巴细胞白血病 (ALL) 的 1 岁以下婴儿,尽管接受了强化治疗,但仍面临无法缓解、复发和因白血病死亡的高风险。婴儿 KMT2A -r ALL 母细胞的特征是 DNA 高甲基化。临床前研究表明,DNA 甲基转移酶抑制剂的表观遗传启动会增加化疗的细胞毒性。儿童肿瘤学组试验 AALL15P1 测试了在第 6 天开始化疗之前立即进行 5 天阿扎胞苷治疗的安全性和耐受性,在四个诱导后化疗疗程中,适用于新诊断为 KMT2A -r ALL 的婴儿。治疗耐受性良好,31 名可评估患者中只有 2 名 (6.5%) 出现剂量限制性毒性。外周血单核细胞全基因组亚硫酸盐测序表明,在接受阿扎胞苷治疗 5 天后,87% 的样本的 DNA 甲基化降低。无事件生存率与之前对新诊断婴儿 ALL 的研究结果相似。阿扎胞苷是安全的,可降低 KMT2A -r ALL 婴儿外周血单核细胞的 DNA 甲基化,但加入阿扎胞苷以增强细胞毒性不会影响生存率。Clinicaltrials.gov 标识符:NCT02828358。
对于 FLT3 突变患者的治疗,Onkopedia 建议如下:• FLT3-ITD 或 FLT3-TKD 突变患者应在诱导治疗的第 8-21 天接受米哚妥林治疗。• 根据一项随机安慰剂对照试验的数据,米哚妥林与标准化疗联合使用可显著延长 60 岁以下 FLT3 突变 AML 患者的 EFS、RFS 和 OS。基于这项研究,EMA 于 2017 年批准米哚妥林与标准诱导化疗联合使用、化疗巩固,以及作为新诊断的 FLT3 突变 AML 患者 12 个 28 天周期的维持治疗。• 与研究人群(年龄 18-59 岁)不同,批准时没有年龄上限。• 60-70 岁患者的数据可从一项 II 期研究中获取。 • 对于计划进行 HSCT 的患者,应在预处理治疗前 48 小时停用米哚妥林。 • 当与强效 CYP3A4 抑制剂(例如酮康唑、泊沙康唑、伏立康唑、利托那韦或克拉霉素)同时使用时,应特别注意毒性,尤其是对于年龄 >60 岁的患者,因为存在米哚妥林水平升高的风险。 • 不应同时使用强效 CYP3A4 诱导剂(例如卡马西平、利福平、恩杂鲁胺、苯妥英、圣约翰草),因为米哚妥林水平会降低。
剂量调整的证据有限,eviQ 上的建议仅供参考。他们通常是保守的,强调安全。任何剂量调整都应基于临床判断和个体患者的情况,包括但不限于治疗意图(治愈性与姑息性)、抗癌方案(单一疗法与联合疗法与化疗与免疫疗法)、癌症生物学(部位、大小、突变、转移)、其他治疗相关副作用、其他合并症、体能状态和患者偏好。建议的剂量调整基于临床试验结果、产品信息、已发布的指南和参考委员会共识。除非另有说明,否则剂量减少适用于每个单独的剂量,而不适用于总天数或治疗周期持续时间。除非另有说明,否则非血液学分级基于不良事件通用术语标准 (CTCAE)。肾脏和肝脏的剂量调整已尽可能标准化。有关更多信息,请参阅剂量注意事项和免责声明。
毒素 - 抗毒素(TA)系统是细菌用来调节噬菌体防御等细菌过程的普遍存在的两基因基因座。在这里,我们演示了一种新型III型TA系统AVCID的机制,并激活了对噬菌体感染的抵抗力。系统的毒素(AVCD)是一种脱氧胞苷脱氨酶,将脱氧胞苷(DC)转化为脱氧尿苷(DU),而RNA抗毒素(AVCI)抑制AVCD活性。我们已经表明,AVCD在噬菌体感染时脱氨基核苷酸脱氨基核苷酸,但是激活AVCD的分子机械词是未知的。在这里我们表明,AVCD的激活是由噬菌体诱导的宿主转录抑制,导致不稳定AVCI的降解。AVCD激活和核苷酸耗竭不仅减少噬菌体复制,而且还增加了缺陷的噬菌体形成。令人惊讶的是,AVCID不抑制的T7等噬菌体的感染也导致AVCI RNA抗毒素降解和AVCD激活,这表明AVCI的耗竭不足以赋予对某些噬菌体的保护。相反,我们的结果支持像T5这样较长复制周期的噬菌体对AVCID介导的保护敏感,而像T7这样的复制周期较短的噬菌体具有抗性。
表观遗传学的变化,例如组蛋白脱乙酰化和DNA甲基化来调节基因表达。实际上,表观遗传变化容易发生变化,并且是出色的候选者,以解释某些因素如何增加肿瘤发生和癌症诱导的风险。然而,通过对关键调节剂(例如肿瘤抑制基因(TSG))的转录沉默,DNA甲基化在癌症中起着重要作用。基本上,肿瘤发生是由两个不同基因组的变化指导的:抑制细胞生长和促进该过程的细胞基因的TSG。同时,染色质修饰(例如DNA甲基化)会影响局部染色质结构,而没有任何DNA序列变化。肿瘤发生的主要步骤是通过位于启动子区域的CpG岛的过度甲基化来失活基因。在哺乳动物中,DNA甲基化发生在胞嘧啶的C5位置,主要是在CpG二核苷酸内(Grønbaek等,2007)。特定的酶,例如DNA甲基转移酶(DNMT)在DNA甲基化中起主要作用,并导致TSG的表达降低,导致癌症
警告: • 对已有药物引起的骨髓抑制或肝功能受损的患者慎用阿糖胞苷 2 • 由于潜在毒性,请勿将含苯甲醇的产品或用保存的稀释剂重构的产品用于鞘内注射、用于新生儿或用于高剂量阿糖胞苷方案 2 • 高剂量疗法(2,000-3,000 mg/m 2 )可能会引起严重甚至致命的中枢神经系统、胃肠道和肺部毒性 2 致癌性:阿糖胞苷具有潜在致癌性。1 致突变性:Ames 试验和哺乳动物体外突变试验显示致突变性。阿糖胞苷在哺乳动物体外和体内染色体试验中具有致染色体断裂作用。9 生育力:在动物研究中,使用阿糖胞苷治疗后观察到精子头部异常。尚未进行正式的生育力研究。 10-12 据报道,阿糖胞苷具有可逆性和不可逆性生殖细胞毒性。4,13 尚无确定总剂量,低于该剂量不会对生育力造成风险。睾丸或卵巢功能受损程度的预测受多种变量影响,包括给药途径、治疗剂量和疗程、治疗频率以及联合治疗的使用。4,13 妊娠:动物研究表明,阿糖胞苷具有胚胎毒性和致畸性,并在多种物种中产生围产期和产后毒性。虽然在妊娠三个阶段接受治疗的患者均能产下正常婴儿,但也有报道称,胎儿可能出现先天性畸形,尤其是在妊娠前三个月胎儿接触阿糖胞苷时。报道的先天性畸形包括上肢和下肢远端缺损、肢体和耳朵畸形、脾脏肿大以及绒毛膜组织中的 C 三体染色体异常。如果在妊娠中期或晚期开始使用阿糖胞苷,则风险肯定存在,但会降低。10-12 由于阿糖胞苷可能会分泌到乳汁中,因此不建议母乳喂养。2
幼年型粒单核细胞白血病 (JMML) 是一种罕见的儿童骨髓增生性肿瘤。JMML 的分子特征是 Ras/MAPK 通路过度活跃,最常见的原因是编码蛋白酪氨酸磷酸酶 SHP2 的基因 PTPN11 发生突变。目前治疗 JMML 的策略包括使用低甲基化剂 5-阿扎胞苷 (5-Aza) 或 MEK 抑制剂曲美替尼和 PD0325901 (PD-901),但这些药物均不能作为单一疗法治愈。利用 Shp2 E76K/ + 小鼠 JMML 模型,我们表明 5-Aza 和 PD-901 的组合可调节 JMML 患者中常见的几种血液学异常,部分原因是通过减少白血病造血干细胞和祖细胞 (HSC/Ps) 的负担。接受药物治疗的小鼠中 JMML 特征的减少与接受 5-Aza 和 PD-901 联合治疗的 Shp2 E76K/+ 小鼠中 p-MEK 和 p-ERK 水平的降低有关。RNA 测序分析显示几种 RAS 和 MAPK 信号相关基因减少。此外,在接受两种药物联合治疗的 Shp2 E76K/+ 小鼠中还观察到与炎症和髓系白血病相关的基因表达减少。最后,我们报告了两例接受 5-Aza、曲美替尼和化疗治疗的 JMML 和 PTPN11 突变患者,他们因联合治疗而出现临床反应。