包括布鲁氏杆菌、棒状杆菌、巴氏杆菌、肺炎球菌和链球菌等难培养菌,在适当的温度下无需添加增菌剂(1,11,12)即可在较长时间内生长。甚至一些对光敏感的厌氧微生物也可以在没有特殊条件的情况下在该培养基中生长,但在还原气氛中,它们会得到理想的生长。该培养基在新鲜配制时效率最高,但可以长期保存,但注意避免脱水。为此,强烈建议使用螺旋盖或适当密封。在有二氧化碳的培养基中,牛放线菌、漏斗状拟杆菌和细毛菌(8)等厌氧菌在该培养基中生长良好。添加碳水化合物后,它可用于研究不在酚红经典培养基中生长的微生物的糖发酵。通过酚红指示剂的颜色变化可以轻易观察到酸化。在半固体琼脂中,酸性反应很容易检测到,因为形成的酸不会像在肉汤中那样立即扩散到整个培养物中。当不存在可发酵碳水化合物时,大多数培养物都会出现碱性反应。在半固体培养基中很容易检测到运动性 (13)。运动性培养物远离接种线生长。非运动性生物沿着接种线在接种区域生长,而周围区域保持清洁。胰蛋白胨、L-胱氨酸提供支持苛刻微生物生长所需的营养。碳水化合物发酵是通过培养基的可见颜色变化来检测的,这是由于 pH 指示剂染料酚红的掺入。当生物代谢存在的碳水化合物时,会产生有机酸,培养基会变酸。然而,培养基中存在的蛋白胨也会被存在的细菌降解,产生 pH 呈碱性的物质。当碳水化合物发酵产生的酸量大于蛋白胨降解的碱性终产物时,酚红指示剂会从红橙色变为黄色。酚红的颜色变化发生在 pH 值 6.8 左右,接近培养基的原始 pH 值。在研究奈瑟菌属的发酵时,只接种管状培养基的表面。对于兼性生物,例如链球菌和严格厌氧生物,接种方法是用接种针刺入培养基中心,深度约为培养基深度的 1/2。根据所测试的生物,使用松开的盖子进行有氧或厌氧培养。奈瑟菌应使用松开的盖子培养(7);如果在 CO2 培养箱中培养(3,10),则应在非 CO2 培养箱中使用紧密的盖子培养(3)。为了更快地生长和更快地进行发酵反应,厌氧培养物最好在 CO2 以及氢气或氮气存在下进行培养。
2024 年 4 月 4 日从鲁汶大学图书馆 (193.190.253.145) 的 journals.physiology.org/journal/ajprenal 下载。
胱氨酸病是一种罕见遗传性疾病,其特征是胱氨酸积聚和结晶,可导致肾脏、甲状腺、眼睛和大脑等多种组织和器官严重受损。虽然胱氨酸病对大脑功能的影响与其对其他器官的影响相比相对较轻,但该人群的寿命增加以及因此对社会做出生产性贡献的潜力导致人们对其对大脑功能的影响越来越感兴趣。尽管如此,尽管存在一些结构性大脑差异的证据,但这种突变对神经的影响仍未得到很好的描述。在这里,我们使用被动持续时间异常范式(具有不同的刺激开始异步性 (SOA),代表对记忆的不同需求水平)和高密度电生理学,在一组 22 名被诊断患有胱氨酸病的儿童和青少年(年龄范围:6-17 岁)和神经典型年龄匹配的对照组(N = 24)中测试了基本听觉处理。我们检查了 N1 和不匹配负波 (MMN) 在各组之间是否存在显著差异,以及这些神经测量值是否与言语和非言语智商相关。被诊断患有胱氨酸病的个体表现出与年龄匹配的同龄人相似的 N1 反应,表明该人群的基本听觉处理是典型的。然而,尽管两组对最短(450 毫秒)SOA 表现出相似的 MMN 反应,表明变化检测和感觉记忆完好无损,但诊断为胱氨酸病的个体对较长(900 毫秒和 1800 毫秒)SOA 的反应明显减少。这可能表明在诊断为胱氨酸病的儿童和青少年中,听觉感觉记忆痕迹持续时间缩短,因此感觉记忆受损。未来需要研究感觉和工作记忆的其他方面,以了解此处描述的差异的根本基础及其对高阶处理的影响。
细胞在敌对或营养不足的环境中生存的主要挑战之一,例如肿瘤微环境,是由代谢失衡或快速增殖引起的活性氧(ROS)缓冲活性氧(ROS)。过多的ROS的细胞需要产生保护性分子,例如谷胱甘肽,以减轻破坏性作用。谷胱甘肽的产生需要半胱氨酸,通常通过SLC7A11胱氨酸 - 谷氨酸抗虫剂从细胞外环境中吸收氧化二聚体形式,胱氨酸。如果胱氨酸的摄取被阻断,细胞会经历铁毒性,这是由磷脂过氧化引起的铁依赖性死亡,尤其是多不饱和脂肪酸(PUFA),导致质膜膜中的广泛异常。铁凋亡通过白介素释放(IL-1和IL-18)激活免疫系统,并与炎症性疾病和伤害有关(1次审查1)。为了避免铁铁作用,许多癌症上调了SLC7A11,并进口大量胱氨酸以进行有效的谷胱甘肽生产。然而,这还需要准备好通过五磷酸五磷酸途径生产NADPH的葡萄糖,以便可以减少胱氨酸以降低用于谷胱甘肽生物合成(图1)。
已知低分子量 (LMM) 硫醇化合物对各种生物体的许多生物过程都很重要,但 LMM 硫醇在厌氧菌中的研究不足。在这项工作中,我们研究了模型铁还原细菌 Geobacter sulphurreducens 对具有与半胱氨酸相关化学结构的纳摩尔浓度 LMM 硫醇的产生和周转。我们的结果表明,G. sulphurreducens 根据细胞生长状态和外部条件严格控制硫醇的产生、排泄和细胞内浓度。内源性半胱氨酸的产生和细胞输出与 Fe(II) 的细胞外供应相结合,这表明半胱氨酸排泄可能在细胞向铁蛋白的运输中发挥作用。添加过量的外源性半胱氨酸导致细胞将半胱氨酸快速大量地转化为青霉胺。添加同位素标记的半胱氨酸的实验证实,青霉胺是由半胱氨酸 C-3 原子二甲基化形成的,而不是通过对半胱氨酸暴露的间接代谢反应形成的。这是首次报道该化合物的从头代谢合成。青霉胺的形成随着外部暴露于半胱氨酸而增加,但该化合物并未在细胞内积累,这可能表明它是 G. 硫还原菌维持半胱氨酸稳态的代谢策略的一部分。我们的研究结果强调并扩展了严格厌氧菌中介导半胱氨酸样 LMM 硫醇稳态的过程。青霉胺的形成尤其值得注意,这种化合物值得在微生物代谢研究中引起更多关注。
摘要肺癌的发生依赖于细胞内的半胱氨酸来克服氧化应激。包括非小细胞肺癌 (NSCLC) 在内的几种肿瘤类型通过过表达胱氨酸转运蛋白 SLC7A11 上调 xc - 胱氨酸/谷氨酸反向转运蛋白 (xCT) 系统,从而维持细胞内半胱氨酸水平以支持谷胱甘肽合成。核因子红细胞 2 相关因子 2 (NRF2) 通过调节 SLC7A11 充当氧化应激抵抗的主要调节器,而 Kelch 样 ECH 相关蛋白 (KEAP1) 充当氧化反应转录因子 NRF2 的细胞质抑制因子。KEAP1/NRF2 和 p53 的突变会诱导 NSCLC 中的 SLC7A11 激活。细胞外胱氨酸对于提供对抗氧化应激所需的细胞内半胱氨酸水平至关重要。胱氨酸可用性中断会导致铁依赖性脂质过氧化,从而导致一种称为铁死亡的细胞死亡。xCT 的药理抑制剂(SLC7A11 或 GPX4)会诱导 NSCLC 细胞和其他肿瘤类型的铁死亡。当胱氨酸摄取受损时,细胞内的半胱氨酸池可以通过转硫途径维持,该途径由胱硫醚-B-合酶 (CBS) 和胱硫醚 g-裂解酶 (CSE) 催化。外源性半胱氨酸/胱氨酸和转硫途径参与半胱氨酸池和下游代谢物会导致 CD8 + T 细胞功能受损和免疫疗法逃避,从而削弱免疫反应并可能降低免疫治疗干预的有效性。细胞焦亡是一种以前未被认识的受调节细胞死亡形式。在由 EGFR、ALK 或 KRAS 驱动的 NSCLC 中,选择性抑制剂可诱导细胞焦亡和凋亡。靶向治疗后,线粒体内在凋亡途径被激活,从而导致 caspase-3 的裂解和活化。因此,gasdermin E 被激活,从而导致细胞质膜通透化和细胞溶解性焦亡(以特征性细胞膜膨胀为标志)。本文还讨论了 KRAS G12C 等位基因特异性抑制剂的突破和潜在的耐药机制。关键词溶质载体家族 7 成员 11 (SLC7A11);核因子红细胞 2 相关因子 2 (NRF2);铁死亡;焦亡;KRAS G12C 等位基因特异性抑制剂;非小细胞肺癌 (NSCLC)
蛋白质替代剂量每天三到四次。给药:口服或通过鼻胃/胃造口管。血胱氨酸可能很低,需要补充胱氨酸。剂量取决于常规的血液检查,并由专业营养师调整。怀孕通常是进行饮食管理加强的时期,新饮食产品的使用可能至关重要。在整个怀孕期间,必须维持饮食治疗,以保护母亲免受血小板事件的侵害,并确保足够的蛋白质摄入量和整体营养以支持胎儿生长。怀孕可能在不计划患者表现的不安全代谢控制的情况下发生。重新代谢控制被认为是紧迫的问题,严格的饮食管理将立即实施。因此,在成年之前/成年后未使用饮食处方产品。
乳腺癌是全球三大癌症之一,也是女性中最常见的癌症(1)。由于早期发现和治疗方面的进步,乳腺癌的预后有所改善(2)。然而,乳腺癌仍然是发达国家癌症相关死亡的第二大原因,其发病率和死亡率在亚洲、非洲和南美洲呈逐渐上升趋势(2)。全球约 20% 的乳腺癌过度表达或扩增 HER2(erb-b2 受体酪氨酸激酶 2,ERBB2)致癌基因。尽管 HER2 阳性与预后不良和对标准化疗的反应有关,但 HER2 mAb 和抑制剂的引入改善了 HER2 + 乳腺癌患者的无病生存率和总生存率(OS)(3)。然而,大多数患者
细胞 CR1008-500 人类阿尔茨海默氏症早老素-1 突变 iPSC 细胞 CR1009-500 人类戈谢氏病 1 型 iPSC 疾病 细胞 CR1010-500 人类囊性纤维化 iPSC 模型 细胞 CR1011-500 人类胱氨酸病 iPSC iPSC 细胞 CR1012-500 人类尼曼匹克 C 型 (雄性) iPSC 细胞 CR1013-500 人类尼曼匹克 C 型 (雌性) iPSC 细胞 CR1014-500 人类 Alpha 1 抗胰蛋白酶缺乏症 iPSC
单元4蛋白质号小时:蛋白质的12个功能,蛋白质的一级结构:氨基酸,蛋白质的组成部分。氨基酸的一般公式和zwitterion的概念。氨基酸的滴定曲线及其意义,分类,生化结构和标准蛋白氨基酸的ninhydrinrection。蛋白质中的氨基酸的自然修饰,蛋白质,氰氨基蛋白,胱氨酸和羟基丙烯蛋白,非蛋白质氨基氨基酸,beta-氨基酸,beta-丙氨酸,dramicinine,D-Arananananananananananannine,D-Alaginine,Dramica寡肽:天然存在的谷胱甘肽和胰岛素和合成阿斯巴甜的结构和功能,蛋白质的二级结构:肽单位及其显着特征。alpha螺旋,β褶片及其在蛋白质的蛋白质,第三和第四纪结构中的发生。将多肽固定在一起的力。人类血红蛋白结构,蛋白质的第四纪结构