作者 C Lepeytre · 2021 · 被引用 5 次 — 化学、生物、放射和核 (CBRN) 事故或袭击通常会传播。建筑物和结构内外的 25 种污染物...
摘要:聚合物胶体具有显著的特性,在包括医学在内的许多研究领域中越来越重要。目前,抗癌药物的创新处于世界领先地位。聚合物胶体已被用作癌症治疗中的药物输送和诊断剂。聚合物胶体可以是不同类型的,例如胶束、脂质体、乳液、阳离子载体和水凝胶。本文介绍了用于治疗癌症的最新聚合物胶体。本文的内容是关于聚合物纳米材料的作用,特别强调了不同类型的胶体材料及其在靶向癌症治疗(包括癌症诊断)中的应用。此外,还尝试讨论未来的观点。本文将对学者、研究人员和监管机构有用。
从线性粘弹性方案中的流变实验估计。悬浮液在频率范围内未表现出终端松弛0.01-100 rad/s在技术上被认为是玻璃1,5,7,31,37。
纳米颗粒在接口处。没有纳米颗粒,系统将在系统中发生宏观分离,这两个阶段将根据其密度而定。[5,6] 2000年代初期证明了Bijels生产的第一个程序。第一个实验成功的方法是所谓的热旋缺失分解。[7]在2015年,Haase和同事改善了这种方法,开发了一种导致旋律分解的方法,该方法依赖于从三元混合物中去除溶剂的方法。[8]在这种情况下,将两个易碎的液体与溶剂混合在一起,该溶剂具有使它们相互溶于的能力。将所谓的混合物注入能够提取溶剂的连续相中,其突然去除会诱导两个剩余流体的旋律分解。最近,Clegg Research Group定义了一种越来越简单,更快的生产协议,涉及所涉及的组件之间的直接混合。[9]以这种策略分散到两种不混溶的液体中,需要一些表面活性剂。以这种方式,可以偏爱面部表面的不同局部曲率并稳定结构。与旋律分解不同,这里的比杰尔是通过应用高剪切速率形成的,因此,在初始阶段,产生了二元混合物的液滴。去除剪切物后,粗糙的过程开始将颗粒[1]在接口处捕获[1],直到融合融合为止。最近的Huang等人。同时,表面活性剂施加了液态液接触表面的局部曲率,有助于形成特征性的双连续结构。[1,2,10]仅使用简单的涡流混合简化了生产方法。这样做,他们采用了不同的分子量表面活性剂的组合来稳定不同的局部曲率,以与两个液相之间的界面稳定。在这种情况下,形成比耶尔的唯一必要条件是使用具有不同分子量的聚合物的混合物和足够高的颗粒来形成双连续性的互面膜间堵塞的乳胶凝胶。在最近几年中,比杰尔(Bijels)在许多工业领域表现出了有希望的应用,例如电池,燃料电池和许多其他领域,其中具有控制结构的多相材料引起了任何关注。[11]从医学角度来看,使用Bijels的主要优势居住在可能获得系统
Wolfgang Ostwald将1914年的胶体和界面研究描述为“被忽视的维度世界”,直到几年前,这一说法实际上才有其理由。但是我们实际上是通过胶体理解的?胶体是分布良好的单位,其尺寸从纳米到千分尺范围,并且具有高表面/体积比。它们在活泼的自然界(血液,牛奶,细胞)以及技术世界(颜色,墨水,药物),微电子或建筑材料中无处不在。因此,已经检查了胶体研究的许多方面。为什么一个研究所在11年前成立了该研究领域的基础知识?的化学和物理学都涉及分子水平(“分子科学”)和宏观级别(固体研究)上对结构的产生和理解。两者之间的长度尺度和层次结构本质上都被忽略了。今天,另一方面,我们发现了化学方面有强大的租户,可以准备更大的结构并控制其存储。此外,物理学学会了将宏观结构微型化,并在所有维度上都在网格上使用真空技术构建。1997年,这种“中间种族”成为公共,政治和社会现象,并记录在标语“ Nano Sessions”中。现在的渗透率如此之高,以至于公司将这个特殊科学领域理解为最重要的希望之一。这是1992年尚未预测的发展,但它已经以其中央的纳米科学活动证实了该机构。该研究所现在可以与德国和世界各地的其他活动竞争吗?这一判断无权授予我们,但我们还希望通过该BR和Shear介绍过去两年的研究活动之外的公众。胶体和界面的领域是高度多学科的,并触及了许多专业学科的特殊语言和知识文化,这些学科并不总是可以理解的。因此,我们在所有缩写的一般介绍之前,在其中工作和动机的工作方式,然后是简短的进度报告。了解一个充满不同印象的世界:生物相i的过程,自组织,具有以前未知分辨率的新测量技术,人工细胞的构建,新的理论方法,规模耦合和新的数值模型算法。
可打印的光学活性材料有限,需要定制的墨水配方。为了解决功能材料的有限可用性用于光电设备的喷墨制造,需要探索适用于具有不同组成的纳米颗粒的多功能墨水配方策略。这还将为在单个设备中探索多个纳米颗粒的探索新机会,以达到特定的光谱敏感性。在这里,我们开发了GQD的可打印墨水公式,nay-f 4:(20%yb和/或2%ER掺杂)UCNPS和PBS QDS Inks,并展示了它们用于基于石墨烯的光电探测器和荧光显示器等设备。通过开发和优化墨水配方,打印策略和沉积技术,以可控的方式沉积了光敏的纳米材料层,并将其集成到印刷的异质结构中。我们通过将其用作单层石墨烯(SLG)光电材料中的表面函数化层来体现纳米材料墨水制剂的潜力,其中可以实现r b 10 3 a w 1的光反应率,并且可以从gqd/slg到nir/slg和slg和slg dep dep dep and slg and slg和ppb and slg和pbs slg和pbs slg slg and slg slg和pps。我们还探索了多个墨水的沉积到一个结构中,说明可以产生诸如荧光显示器之类的设备,因为我们在此处使用CSPBBR 3 Perovskite NCS和UCNP喷墨印刷在柔性透明底物上。这项工作扩展了可打印的光活性纳米材料的材料库,并展示了其前瞻性用于印刷光电材料(包括柔性设备)。
1. 引言 近年来,由于钙钛矿太阳能电池成本低、效率高、制备简单等特点,吸引了众多研究人员的关注。自从 2009 年 Miyasaka 等人首次报道以来,钙钛矿太阳能电池 (PSC) 技术已经从 3.8% 提升至 25% 左右 [1,2]。基本的钙钛矿太阳能电池由透明导电层(例如氟掺杂氧化锡 (FTO) 或铟掺杂氧化锡 (ITO)、电子传输层、光敏钙钛矿层、空穴传输层以及金属电极)组成。由于电子传输层适用于所有层,因此它对于 PSC 的高效率起着重要作用。TiO 2 是最常用的电子传输层之一,因为它具有多种制备方法,例如旋涂、喷涂、溅射等 [3–5]。除了制备技术之外,TiO 2 结构还存在一些问题,例如氧空位和非化学计量缺陷,尤其是位于 TiO 2 表面的缺陷 [6,7]。这些缺陷阻碍电子流动,导致钙钛矿太阳能电池性能不佳。一些研究人员报道了一些不同的材料如 SnO 2 、 ZnO、CdS 和 WOx 代替 TiO 2 作为电子传输层 [8–11]。尽管 CdS 作为电子传输层还远远不能令人满意,但它可能是改性和钝化 TiO 2 表面的优异界面材料。最近,Hwang 等人报道 CdS 作为介孔 TiO 2 层的改性材料,可提高钙钛矿太阳能电池的稳定性 [12]。Zhao 等人使用 CdS 作为前体溶液的添加剂,观察到复合显著减少 [13]。Dong 等人使用 CdS 作为电子传输层,观察到 PSC 的效率为 16.5% [14]。Wessendorf 等人通过使用 CdS 作为电子传输层,观察到磁滞减小 [15]。Cd 扩散到钙钛矿层导致晶粒尺寸增加,从而提高效率 [16]。Mohamadkhania 等人使用 SnO 2 表面上的 CdS 作为界面改性剂,观察到磁滞减小和效率提高 [17]。Ma 等人表明,在 TiO 2 表面化学沉积 CdS 可将效率从 10.31% 提高到 14.26% [18]。
从合成前进的角度来看,等离子调制需要更多的合成手柄,并且系统的发展至关重要。在文献中,对反应动力学的控制是从1、3和6个面上的PD立方体生长的Ag岛; 11和各种程度的AU - Ag Janus纳米结构是通过调节盐浓度合成的。12在我们的组中,我们表明,在AU种子上的Ag生长中,可以利用强配体分子的嵌入来调节Au - Ag界面能量,8 B 8 B提供了一系列从核心 - 壳到偏心的结构,然后to to to Janus结构具有不同表面覆盖率的结构。此外,在“耗尽球”中调节配体和反应物浓度,从而控制了Au纳米颗粒(NPS)8 A和纳米码的Au岛的数量。10
自激振荡(系统在非周期性刺激下的周期性变化)对于在软机器人技术中创建低维护自主设备至关重要。宏观尺寸的软复合材料通常掺杂有等离子体纳米粒子,以增强能量耗散并产生周期性响应。然而,虽然目前尚不清楚光子纳米晶体的分散体是否可以作为软致动器对光作出反应,但对纳米胶体在液体中自激振荡的动态分析也缺乏。这项研究提出了一种用于照明胶体系统的新型自激振荡模型。它预测热等离子体纳米粒子的表面温度及其簇的数密度在从次声到声学值的频率范围内共同振荡。对自发聚集的金纳米棒的新实验,其中光热效应在宏观尺度上改变了光(刺激)与分散系统的相互作用,有力地支持了该理论。这些发现拓展了目前对自激振荡现象的认识,并预测胶体状态的物质将成为容纳光驱动机械的合适载体。从广义上讲,我们观察到一种复杂的系统行为,从周期性解(霍普夫-庞加莱-安德罗诺夫分岔)到由纳米粒子相互作用驱动的新动态吸引子,将热等离子体与非线性和混沌联系起来。