*对应作者的隶属关系1 Laboratoire des Sciences du Climat et de l'Orvironnement,Cea-Cnrs-Uvsq,IPSL,IPSL,IPSL,IPSL,UniversitéParis-Saclay,91191 Gif-Sur-Yvette,France 2 Center 2 Recherche Surche sur La Compantervation,cnrs:cnrs:cnrs:usr3224,75 005法国巴黎3巴黎大学,5街托马斯·曼(Rue Thomas Mann),75013法国4个中心4个国家中心,duCinéma等人的ImageAnimée,7 bis Rue Alexandre Turpault 78390 Bois d'Arcy,France Abstract actract actract actract actract(CA)的次数替换为20世纪的福特(CA),该效果是临时的,该效率是在20世纪的第二季度,又是一张途中的照片。硝酸纤维素。随着时间的流逝,水解发生,CA的脱乙酰基化产生乙酸(AA),这是膜档案中的一种众所周知的现象,即所谓的“醋综合征”。然而,除了AA外,可能还存在其他瓦解化合物,很少有研究专门研究其定量和定性评估。质子转移反应“飞行时间”质谱仪(PTR-TOF-MS)结合了高灵敏度和高质量分辨率,用于实时检测多种挥发性有机化合物(VOC)。该技术用于评估来自20世纪下半叶的41张膜的空气组成,该薄膜显示出不同的降解水平(使用A-DStrips®:0级至1.5级排名)。检测到了100多个VOC,它们的分布因一部电影而异。AA是27个电影罐中最丰富的VOC。在其他情况下,它是N,N二甲基甲酰胺(DMF),丁醇,乙醛丙酮或甲酸。1。本研究表明,PTR-MS是实时监测的强大工具,并且通过对其VOC排放的定量和定性分析在博物馆环境中进行降解,并且可以将其用于层次群集分析分类。Keywords : cellulose acetate, VOCs, PTR-ToF-MS, movie film, vinegar syndrome Highlights - PTR-ToF-MS was used for the first time for real-time full qualitative and quantitative detection of VOCs released by 41 historical movie films on a cellulose acetate base - Around 100 different organic ions were attributed to VOCs emitted from films - Acetic acid, acetaldehyde,丙酮,丁醇,DMF,甲酸,甲醇,丙酸主导了VOC混合物组成 - 超过41膜,乙酸是27胶卷的最丰富的VOC,丁醇为6,丁醇为6,DMF,用于3张甲酸,用于3张甲酸,适用于2,2,乙醛,2,acetaldeyde,2,acte> actone for 1。引言,研究的上下文•醋酸纤维素缓解纤维素(CA)自20世纪下半叶以来已被广泛使用,作为照片和电影膜的透明基础,以取代易燃性硝酸纤维素。首先被认为是具有良好的终身期望值,它在1980年代已经意识到其保质期要短得多,并且根据气候环境的不同,在不到30年的时间里,有形退化可能会发生(1)。进行水解发生,CA的脱乙酰基化产生乙酸(AA),这是膜档案中众所周知的现象,所谓的“醋综合征”。该过程是自催化的,因为乙酸产生的速度会进一步降解。互惠和薄膜失真也可能导致增塑剂的损失。CA基础收缩率在十年内可能达到0.7%,在极端情况下最多可达到10%(2)。AA浓度在胶片卷轴中积聚并增加了膜降解水平,后者通常是
量子计算具有广泛的兴趣,因为它为从素数分解[1]到非结构化搜索[2]提供了指数或多项式加速。量子计算机的自然使用是对其他量子系统的模拟,在计算化学中具有众所周知的应用[3,4]和冷凝物质物理学[5,6]。近年来已经看到了量子计算机在基于晶格的Quanty场理论(QFT)模拟中提出的应用(参见参考文献。[7,8]及其参考文献,包括量子染色体动力学的模拟(QCD),该理论描述了夸克和胶子的基本相互作用。晶格QCD非常适合研究QCD的低能量(子GEV)行为,但是晶格尺寸的计算成本的迅速增加使得QCD QCD极具挑战性,可用于模拟碰撞,以在诸如大型Hadron Collider(例如LHC)等较高的高级胶卷中探测的最短长度量表(LHC)。在这些能量下,QCD耦合常数αs变小,因此扰动计算成为选择的方法。使用量子计算机在扰动QCD中模拟硬散射过程已在很大程度上尚未探索。一种模拟量子计算机上通用扰动QCD进程的方法仍然缺失,但由于多种原因是可取的。其次,此功能还意味着量子模拟可以很好地适合对具有高质量最终状态的过程具有完全干扰效应的计算。每个贡献都可以分解为颜色部分和运动部分。This may be in part because the aims of perturbative QFT calculations differ from the aims of most quantum simulations: most quantum simulations (including lattice QCD) aim to take a known Hamiltonian and use it to perform the (unitary) evolution of a quantum system, whereas perturbative QFT calculations aim to calculate the (Hermitian, but not unitary) transition matrix describing the scattering of specified external states and hence研究基本颗粒的产生或衰减。首先,扰动QCD计算需要评估许多不可观察的中间状态的贡献,这使得这种计算使自然候选者从量子计算机操纵量子状态的折叠的能力中受益。第三,通用扰动QCD过程的量子模拟可以通过利用已知量子算法(例如量子振幅估计)提供的加速度来提高扰动QCD预测的速度和精度[9-12]。本文的目的是采取步骤使用量子计算机模拟通用扰动QCD进程。扰动QCD中的计算可以通过求和Feynman图的贡献来执行。颜色部分比运动部分更简单,并且实际上存在有效的程序[13 - 18],用于计算经典计算机上的颜色因子。尽管如此,颜色部分仍然提出了在量子计算机上模拟扰动QCD过程的一些通用挑战。1作为例如,形成量子计算机的量子门必须始终是统一的,而feynman规则(颜色和运动学部分都)描述了Feynman图的组成部分,并非完全单位。这意味着颜色部分提供了一个有用的简化设置,可以使用该设置来开发Feynman图的量子计算的框架,因此它们将成为当前工作的重点。本文的主要结果是两个量子门Q和G,它们分别代表了描述Quark-gluon和Triple-Gluon相互作用顶点的Feynman规则的颜色部分。要实施这些门,我们介绍了一个单位化寄存器U的新概念,该概念可以模拟夸克和胶子的非空间相互作用。
量子计算具有广泛的兴趣,因为它为从素数分解[1]到非结构化搜索[2]提供了指数或多项式加速。量子计算机的自然使用是对其他量子系统的模拟,在计算化学中具有众所周知的应用[3,4]和冷凝物质物理学[5,6]。近年来已经看到了量子计算机在基于晶格的Quanty场理论(QFT)模拟中提出的应用(参见参考文献。[7,8]及其参考文献,包括量子染色体动力学的模拟(QCD),该理论描述了夸克和胶子的基本相互作用。晶格QCD非常适合研究QCD的低能量(子GEV)行为,但是晶格尺寸的计算成本的迅速增加使得QCD QCD极具挑战性,可用于模拟碰撞,以在诸如大型Hadron Collider(例如LHC)等较高的高级胶卷中探测的最短长度量表(LHC)。在这些能量下,QCD耦合常数αs变小,因此扰动计算成为选择的方法。使用量子计算机在扰动QCD中模拟硬散射过程已在很大程度上尚未探索。一种模拟量子计算机上通用扰动QCD进程的方法仍然缺失,但由于多种原因是可取的。其次,此功能还意味着量子模拟可以很好地适合对具有高质量最终状态的过程具有完全干扰效应的计算。每个贡献都可以分解为颜色部分和运动部分。This may be in part because the aims of perturbative QFT calculations differ from the aims of most quantum simulations: most quantum simulations (including lattice QCD) aim to take a known Hamiltonian and use it to perform the (unitary) evolution of a quantum system, whereas perturbative QFT calculations aim to calculate the (Hermitian, but not unitary) transition matrix describing the scattering of specified external states and hence研究基本颗粒的产生或衰减。首先,扰动QCD计算需要评估许多不可观察的中间状态的贡献,这使得这种计算使自然候选者从量子计算机操纵量子状态的折叠的能力中受益。第三,通用扰动QCD过程的量子模拟可以通过利用已知量子算法(例如量子振幅估计)提供的加速度来提高扰动QCD预测的速度和精度[9-12]。本文的目的是采取步骤使用量子计算机模拟通用扰动QCD进程。扰动QCD中的计算可以通过求和Feynman图的贡献来执行。颜色部分比运动部分更简单,并且实际上存在有效的程序[13 - 18],用于计算经典计算机上的颜色因子。尽管如此,颜色部分仍然提出了在量子计算机上模拟扰动QCD过程的一些通用挑战。1作为例如,形成量子计算机的量子门必须始终是统一的,而feynman规则(颜色和运动学部分都)描述了Feynman图的组成部分,并非完全单位。这意味着颜色部分提供了一个有用的简化设置,可以使用该设置来开发Feynman图的量子计算的框架,因此它们将成为当前工作的重点。本文的主要结果是两个量子门Q和G,它们分别代表了描述Quark-gluon和Triple-Gluon相互作用顶点的Feynman规则的颜色部分。要实施这些门,我们介绍了一个单位化寄存器U的新概念,该概念可以模拟夸克和胶子的非空间相互作用。
仅供办公室使用 ( ) 首次检查 ( ) 复查计划集 ( ) 水文与水力计算(初步) 保证金估算 $ 计划审查费 $ ( ) 签名与划线计划 ( ) 结构计算 分配给: 说明:在每个项目旁边使用 或“x”表示您遵守,或使用 N/A 表示不适用。任何例外请求都应以书面形式提出并随附于此。 I. 一般规定 1. 包括适用的一般说明(POL:21)。 2. 使用 24" X 36" 纸张尺寸,包括边框 (96-2.208)。 3. 显示标题栏/比例/北箭头 (96.2.208)。 4. 能够微缩胶片复制的计划 - 最小 1/8 英寸字体。(96-2.208)。 5. 包含工程师姓名、编号、到期日期和签名 (96- 2.204)。6. 展示附近地图(必须可微缩胶卷)。7. 包含 3 张或更多张图纸的图纸索引和关键地图 (96-2.204)。8. 公共工程部门检查范围在平面图、典型剖面图和债券估算中清晰显示。(特别是在 LUP 和 DP 等中)9. 展示路灯位置/图例/PG&E 签名 (96-6.214)。如果需要 10 盏或更多路灯,则灯将显示在整个开发项目的连续平面图上。10. 已提交合并到照明区的请求。(附有地图和边界和范围描述以及合并费用。)(96-6.602 和 6.604)。11. 公共工程部门准备的路缘坡度计划(如果有)已纳入改进计划并被证实是充分的。 12. 路缘坡度平面图由工程师准备,供公共工程部门审查,横截面积最大间隔为 50 英尺,沿道路正面延伸至工作范围外至少 150 英尺。显示分段边界外 500 英尺的剖面线、中心线和 EP。13. 标志和划线平面图以及改进平面图中包括的现有划线。14. 每张图纸上均显示开发编号 (SUB、MS、LUP、DP)。15. 显示消防区签名,用于入口和消防栓位置 (96-14.004)。16. 验证场外工作的土地权 (所有权报告、已记录的地役权、进入权等)17. 需要从其他机构 (渔业和野生动物管理局、加州交通部、陆军工程兵团、防洪局等) 获得许可证18. 提交所有场外工作的进入权以供审查 (96-4.204)。 19. 已提交公共通行权范围内的景观美化计划以供审查。 20. 水区运河沿线需要设置围栏(918-2.006)。 21. 对于坡度小于 1% 的道路,铺设前需要进行水质检测。 22. 提供带注释的批准条件(解释如何满足每个 COA)。 II. 道路 A. 典型路段 1. 根据 R 值标明结构路段(98-8.204)。 2. 标明路缘类型(96-2.204 和 CA 70、CA 71)。 3. 显示通行权和街道宽度尺寸。 4. 对于粘性土壤,从 R/W 线开始显示 2:1 的最大挖填坡度,对于沙质土壤,最大坡度为 4:1 - 土壤报告核实例外情况。 5. 标明路拱坡度(98-8.208)。 6.所示的人行道 (96-8.402)。7. 按照 Caltrans 标准 (96-8.2) 所示的行人或自行车设施。8. 所示的路面设计图,其中显示了 TI 值以供审查。B. 平面图 1. 在所有曲线上均显示了曲率半径 (98-6.016)。2. 所示的 20 英尺路缘回转半径 (96-12.404)(主干道和工业街道为 30 英尺)。3. 私家道路交叉口的最小路缘开口为 24 英尺。4. 水平曲线和视距按照公路设计手册设计。