结缔组织的结构包括软骨,肌腱和韧带以及许多器官,例如皮肤,心脏,肝脏,肾脏,肾脏,肺,血管和骨骼,都取决于胶原蛋白。构成心脏细胞外基质的结构蛋白网络的大部分网络由I型胶原蛋白和III型组成,该胶原蛋白为肌肉细胞提供结构支持,并且对心脏功能至关重要。疾病或患病状态的预后和进展可能会受到胶原蛋白类型的上调或下调,特别是Col I和Col III的显着影响。例如,升高Col I蛋白水平可能会施加增加的心肌刚度,从而损害心肌的舒张压和收缩功能。胶原蛋白I是一种僵硬的纤维蛋白,可提供拉伸强度,而Col III产生了将动能作为弹性反弹的弹性网络。这两种胶原蛋白在自然界中具有不同的物理特性。因此,Col I和Col III的控制以及Col I/Col III比率在许多生物学过程中的潜在相关性是这篇全面评论文章的基础。
肌球蛋白移动真核生物的肌肉,是一种微小的分子运动[1]。它通过消耗三磷酸腺苷(ATP)来产生力并进行机械工作。作为线性电动机,它可以通过活细胞内的细胞骨架的轨道样肌动蛋白丝或微管进行运动。以这种方式,亚细胞结构,以及较大的单位(例如细胞或生物)可以以定向方式移动[1,2]。使用基因工程方法,已经有可能产生向后移动的肌球蛋白纳米运动[3]。X射线结构分析和动力学研究等方法进一步阐明了具有技术兴趣的运动蛋白的有序纳米结构的自我组织。对于分子医学,了解分子线性运动和组织中稳定结构之间的结构关系也很重要。骨骼肌由伸长的纤维细胞和肌纤维沿整个长度平行排列[1]组成。肌原纤维包含纵向肉瘤,其肌动蛋白肌膜的高阶和肌球蛋白蛋白具有收缩。骨骼肌的众所周知的横向条纹是由于肌纤维在肌肉纤维中的平行排列而产生的(图1)。几种肌肉纤维沿相同方向捆绑在一起。这些由细胞外基质的结构蛋白(尤其是胶原蛋白纤维)组织。从胶原蛋白家族的大而异构的群体中,发现大部分是纤维状胶原蛋白。但是这种变化可能具有很大的潜力。由于非中心对称结构,胶原蛋白和肌球蛋白的特异性显微成像是可能的[4,5,6,7,8]。使用聚焦激光辐射的超短脉冲会导致瞬态高功率密度和二阶频率加倍(第二次谐波产生,SHG)[7,8]。通过在近红外范围内使用激发波长,第二个谐波渗透到组织中,肌肉组织可以在三个维度中无损地映射(图2)。SHG极化法可用于区分肌球蛋白和胶原蛋白,并进一步胶原蛋白纤维的方向[7,8,9]。可以通过对向后信号进行评估来获得进一步的对比信息。到目前为止,几乎没有任何方法可以调节SHG生成波长以区分肌球蛋白和胶原蛋白纤维[8,9]。但是,一些矛盾的结果要求通过评估光谱信息进行多模式研究。到目前为止,在生物样品中的第二次谐波中,尚未证明完全kleinman对称性的假设和SHG效率的单调降低。相反,最近的研究表明了一种复杂的行为,更明显地使用向后信号而不是前向信号[8,9]。
都柏林市大学的机械与制造工程学院,都柏林9,爱尔兰B医学工程研究中心(Medeng),都柏林城市大学,都柏林9号,爱尔兰C先进加工技术研究中心,都柏林城市大学,都柏林9号,爱尔兰D组织Distrue Engineerering工程小组,解剖学和恢复医学。 Stephen's Green, Dublin 2, Ireland e Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland f Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland g Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College爱尔兰的都柏林,h国家脊柱损伤部门,Mater Misericordiae大学医院,都柏林,爱尔兰I IBET,Biologia de Biologia de Biologia实验性ETecnológica,2781-901 Oeiras,葡萄牙J. Instituto j Instituto j Instituto d de tecnologiaquímicaebiológicaEbiológicanioantounio xavia de llboboa dea dea dea dea dea dea dea dea dea a dea a dea a dea。 Oeiras,葡萄牙K Cappagh国家骨科医院,弗拉斯,都柏林11号,爱尔兰l部分兽医临床科学,兽医学院,都柏林大学学院兽医学院,都柏林4,爱尔兰都柏林市大学的机械与制造工程学院,都柏林9,爱尔兰B医学工程研究中心(Medeng),都柏林城市大学,都柏林9号,爱尔兰C先进加工技术研究中心,都柏林城市大学,都柏林9号,爱尔兰D组织Distrue Engineerering工程小组,解剖学和恢复医学。Stephen's Green, Dublin 2, Ireland e Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2, Ireland f Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland g Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College爱尔兰的都柏林,h国家脊柱损伤部门,Mater Misericordiae大学医院,都柏林,爱尔兰I IBET,Biologia de Biologia de Biologia实验性ETecnológica,2781-901 Oeiras,葡萄牙J. Instituto j Instituto j Instituto d de tecnologiaquímicaebiológicaEbiológicanioantounio xavia de llboboa dea dea dea dea dea dea dea dea dea a dea a dea a dea。 Oeiras,葡萄牙K Cappagh国家骨科医院,弗拉斯,都柏林11号,爱尔兰l部分兽医临床科学,兽医学院,都柏林大学学院兽医学院,都柏林4,爱尔兰
1 西班牙 Esplugues de Llobregat 08950,Santa Rosa 39-57,Institut de Recerca Sant Joan de Déu,神经肌肉疾病应用研究实验室,神经肌肉病理学科,神经儿科服务部; mariacarmen.badosa@sjd.es (CB); alejandro.hernandez@uib.es(AH-D.); daniel.natera@sjd.es(DN-dB); carlos.ortez@sjd.es (科罗拉多州); andres.nascimento@sjd.es(AN); cecilia.jimenez@sjd.es (CJ-M.) 2 罕见疾病网络生物医学研究中心 (CIBERER), Av.西班牙马德里 28029 蒙福特德莱莫斯 3-5; matmorinro@yahoo.es (MM); dgrinberg@ub.edu (总干事); sbalcells@ub.edu (SB); mopelayo@hotmail.com (M. Á .M.-P.) 3 Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, 西班牙; monica.roldan@sjd.es 4 遗传服务,Ram ón ny Cajal 大学医院,Ram ón ny Cajal 卫生研究所,Ctra。 Hive Old Km。 9,100, 28034 马德里,西班牙; sergio.fernandez@hrc.es 5 巴塞罗那大学生物医学研究所(IBUB)生物学院遗传学、微生物学和统计学系,巴塞罗那大学,Av. Diagonal 643, 08028 巴塞罗那,西班牙 6 共聚焦显微镜和细胞成像部门,遗传和分子医学服务中心,罕见病儿科研究所 (IPER),Sant Joan de Déu 医院,Passeig Sant Joan de Deu, 2, 0895 通讯:通讯:lopez@sjd.es
1型糖尿病是由对β细胞抗原引起的自身免疫反应引起的。如今,胰岛素注射仍然是领先的治疗选择。但是,注射治疗无法模仿β细胞提供的高度动态胰岛素释放。3D细胞的微球,作为组织移植物植入的生物工程胰岛素分泌构建体的主要平台和用于体外药物筛查平台的模型。当前的微球制造技术具有几种抽签:需要含有表面活性剂的油相,微球直径不一致以及耗时较高的过程。这些技术已广泛使用藻酸盐,以快速凝胶化,高加工性和低成本。但是,其低生物相容性特性不能提供有效的细胞附着。这项研究提出了使用3D生物生产商使用ECM样微环境来实现有效细胞的微球产生来克服这些局限性的高通量方法。与单宁酸交联的微球可防止胶原酶降解并增强球形结构一致性,同时允许营养和氧气扩散。该方法允许自定义微球直径具有极低的可变性。总而言之,开发了一种新型的生物印刷程序,以制造大量可重复的微球,能够响应细胞外葡萄糖刺激而分泌胰岛素。
摘要背景:在脑出血(ICH)的治疗限制领域,近年来非侵入性经颅电刺激(tES)取得了长足的发展。转化研究推测经颅直流电刺激(tDCS)和其他类型的 tES 仍然是一种潜在的新型治疗选择,可以逆转或稳定认知和运动障碍。目的:本研究旨在比较评估 tDCS、经颅交流(tACS)、脉冲(tPCS)和随机噪声(tRNS)刺激等四种主要 tES 模式对胶原酶诱导的雄性大鼠感觉运动障碍和纹状体组织损伤的影响。方法:为了诱发 ICH,将 0.5 μl 胶原酶注射到雄性 Sprague Dawley 大鼠的右侧纹状体中。手术后一天,对动物连续七天施加 tES。在手术前一天和术后第 3、7 和 14 天通过神经功能缺损评分、转棒和悬线测试评估运动功能。行为测试后,适当准备脑组织以进行立体学评估。结果:结果表明,四种 tES 模式(tDCS、tACS、tRNS 和 tPCS)的应用显著逆转了胶原酶诱导的 ICH 组的运动障碍。此外,tACS 和 tRNS 接受大鼠在悬线和转棒测试中的运动功能改善高于其他两个 tES 接受组。结构变化和立体学评估也证实了行为功能的结果。结论:我们的研究结果表明,除了 tDCS 在 ICH 治疗中的应用外,其他 tES 模式,尤其是 tACS 和 tRNS 可被视为中风的附加治疗策略。关键词:脑出血,纹状体,经颅电刺激,运动功能,体视学
抽象的原始皮肤是皮革制革厂中使用的常见主要材料。作为一种有机材料,皮革有微生物损害微生物的风险。尽管制革厂过程使用多种化学物质和动作来防止其损坏,但皮革的较长储存时间可以为微生物提供重生的机会。该研究旨在通过微生物的活性引起的微观结构条件了解监测器蜥蜴皮革质量。通过细菌计数评估皮革的各种储存时间(1、2、3和4年)。根据结果,皮革中的细菌计数和氮含量显着增加(p <0.05),而皮革储存两年后的pH值和热稳定性显着下降。因此,储存时间越长,皮革质量就越低。
摘要:甲氨蝶呤 (MTX) 是治疗类风湿性关节炎 (RA) 的一线疗法,然而,其使用可能受到副作用(尤其是注射后不适)的限制。当患者不耐受或反应迟钝时,可能需要二线或抗体疗法。叶酸靶向脂质体制剂 MTX (FL-MTX) 对关节炎爪有亲和性,可预防小鼠胶原诱导性关节炎 (CIA) 的发生。我们将药物与脂质的摩尔比优化为 0.15,并证明了这种形式在每周两次腹膜内 (ip) 注射 2 mg/kg MTX 时的治疗效果。这些改进的脂质体在发炎关节中的存在与爪肿胀程度和骨重塑活性成正比。与游离物质相比,FL-MTX 的肝肾消除率较低。 FL-MTX 腹腔注射或皮下注射 (sc) 的效果相同,每周两次 2 mg/kg FL-MTX(药物/脂质 0.15)在降低小鼠 CIA 模型的发病率和肿胀方面与 35 mg/kg MTX(相同途径和时间表)的效果相似或更有效。这些结果表明,FL-MTX 是一种比游离 MTX 治疗更有效的纳米治疗制剂。它对患者的潜在益处可能包括减少治疗频率和降低给定反应的总剂量。
可以将微观结肠炎的发生率与几个欧洲国家的IBD(溃疡性结肠炎和克罗恩病)的发生率进行比较。丹麦病理学登记册在2001年至2016年之间对丹麦的患者进行了全国范围的研究。在1980年至2013年期间,克罗恩病的发病率从5.2升至每10万居民,而溃疡性结肠炎的发生率从10.7升至18.6(Lophaven等人(Lophaven等)2017)。相比之下,丹麦的显着性结肠炎的总体发病率从2001年的每100,000人的2.3例增加到2016年的每10万人的24.3例。2011年,观察到的微型结肠炎的最高发生率为每100,000人32.3人(Weimers等人。2020)。