[1] K. R. Walker和G. Tesco,“创伤性脑损伤后认知功能障碍的分子机制”,《衰老神经科学》的前沿,第1卷。5,p。 29,2013。[2] S. Jiang,S。Chen和S. Chen,“新型抗菌棉纺织品,配以Siloxane硫磺丙基贝因,” Fiber Soc。春天,pp。263-264,2011。[3] S. Chen等。,“环保抗菌棉纺织品,配以硅氧烷硫丙基贝素,” ACS Applied Material&Interfaces,第1卷。3,不。4,pp。1154-1162,2011。[4] S. Chen,S。Chen,S。Jiang,Y。Mo,J。Tang和Z.GE,“硅氧烷硫烷抗微生物剂的合成和表征,”,《表面科学》,第1卷。605,否。11-12,pp。L25-L28,2011。[5] S. Chen等。,“含有含反应性硅氧烷的性硫丙基的研究,用于抗菌材料中”,“胶体和表面B:Biointerfaces,第1卷。85,否。2,pp。323-329,2011。[6] S. Jiang,Y. Liu,T。Wang,Y。Gu和Y. Luo,“基于MaleImide-Thiol结合的新型抗菌水凝胶的设计和制备”,《 ISSN》,第1卷。2766,p。 2276,2023。 [7] S. Jiang和T. Zhang,“对生物相容性的马来酰亚胺修饰的葡萄糖和透明质酸水凝胶系统的研究”,“精细化学工程”,pp。 100-109,2023。 [8] S. Jiang,Y。Liu和T. Wang,“对神经退行性疾病的新型生物相容性快速凝胶水凝胶的研究”,《生物医学科学与技术研究杂志》,第1卷。 50,没有。2766,p。 2276,2023。[7] S. Jiang和T. Zhang,“对生物相容性的马来酰亚胺修饰的葡萄糖和透明质酸水凝胶系统的研究”,“精细化学工程”,pp。100-109,2023。[8] S. Jiang,Y。Liu和T. Wang,“对神经退行性疾病的新型生物相容性快速凝胶水凝胶的研究”,《生物医学科学与技术研究杂志》,第1卷。50,没有。3,pp。1149-1157,2023。[9] S. Jiang,Y。Liu和Y. Gu,“用于组织工程的基于肽的短多糖水凝胶:迷你综述。”[10] D. Jhala和R. Vasita,“关于模仿人造干细胞生态位的细胞外基质策略的综述,” Polymer评论,第1卷。55,否。4,pp。561-595,2015。[11] M. Bahram,N。Mohseni和M. Moghtader,“水凝胶和一些最新应用的简介”,在水凝胶的分析和应用中的新兴概念中:Intechopen,2016。[12] T. R. Hoare和D. S. Kohane,“药物输送中的水凝胶:进度和挑战”,Polymer,第1卷。49,否。8,pp。1993-2007,2008。[13] S. Jiang,Y。Gu和E. Kumar,“基于五种机器学习算法的磁共振成像(MRI)脑肿瘤图像分类”,“云计算和数据科学,pp。122-133,2023。[14] S. Jiang,Y。Gu和E. Kumar,“通过电子健康记录使用人工智能技术的中风风险预测,”人工智能演变,pp。88-98,2023。[15] J.Song,Y。Gu和E. Kumar,“基于光谱聚类算法的胸部疾病图像分类”,有关计算机科学的研究报告,pp。77-90,2023。[16] Y. Gu等。,“揭示乳腺癌风险特征:由在线网络应用程序赋予的生存聚类分析”,《未来肿瘤学》,第1期。0,2023。
[1] K. R. Walker和G. Tesco,“创伤性脑损伤后认知功能障碍的分子机制”,《衰老神经科学》的前沿,第1卷。5,p。 29,2013。[2] S. Jiang,S。Chen和S. Chen,“新型抗菌棉纺织品,配以Siloxane硫磺丙基贝因,” Fiber Soc。春天,pp。263-264,2011。[3] S. Chen等。,“环保抗菌棉纺织品,配以硅氧烷硫丙基贝素,” ACS Applied Material&Interfaces,第1卷。3,不。4,pp。1154-1162,2011。[4] S. Chen,S。Chen,S。Jiang,Y。Mo,J。Tang和Z.GE,“硅氧烷硫烷抗微生物剂的合成和表征,”,《表面科学》,第1卷。605,否。11-12,pp。L25-L28,2011。[5] S. Chen等。,“含有含反应性硅氧烷的性硫丙基的研究,用于抗菌材料中”,“胶体和表面B:Biointerfaces,第1卷。85,否。2,pp。323-329,2011。[6] S. Jiang,Y. Liu,T。Wang,Y。Gu和Y. Luo,“基于MaleImide-Thiol结合的新型抗菌水凝胶的设计和制备”,《 ISSN》,第1卷。2766,p。 2276,2023。 [7] S. Jiang和T. Zhang,“对生物相容性的马来酰亚胺修饰的葡萄糖和透明质酸水凝胶系统的研究”,“精细化学工程”,pp。 100-109,2023。 [8] S. Jiang,Y。Liu和T. Wang,“对神经退行性疾病的新型生物相容性快速凝胶水凝胶的研究”,《生物医学科学与技术研究杂志》,第1卷。 50,没有。2766,p。 2276,2023。[7] S. Jiang和T. Zhang,“对生物相容性的马来酰亚胺修饰的葡萄糖和透明质酸水凝胶系统的研究”,“精细化学工程”,pp。100-109,2023。[8] S. Jiang,Y。Liu和T. Wang,“对神经退行性疾病的新型生物相容性快速凝胶水凝胶的研究”,《生物医学科学与技术研究杂志》,第1卷。50,没有。3,pp。1149-1157,2023。[9] S. Jiang,Y。Liu和Y. Gu,“用于组织工程的基于肽的短多糖水凝胶:迷你综述。”[10] D. Jhala和R. Vasita,“关于模仿人造干细胞生态位的细胞外基质策略的综述,” Polymer评论,第1卷。55,否。4,pp。561-595,2015。[11] M. Bahram,N。Mohseni和M. Moghtader,“水凝胶和一些最新应用的简介”,在水凝胶的分析和应用中的新兴概念中:Intechopen,2016。[12] T. R. Hoare和D. S. Kohane,“药物输送中的水凝胶:进度和挑战”,Polymer,第1卷。49,否。8,pp。1993-2007,2008。[13] S. Jiang,Y。Gu和E. Kumar,“基于五种机器学习算法的磁共振成像(MRI)脑肿瘤图像分类”,“云计算和数据科学,pp。122-133,2023。[14] S. Jiang,Y。Gu和E. Kumar,“通过电子健康记录使用人工智能技术的中风风险预测,”人工智能演变,pp。88-98,2023。[15] J.Song,Y。Gu和E. Kumar,“基于光谱聚类算法的胸部疾病图像分类”,有关计算机科学的研究报告,pp。77-90,2023。[16] Y. Gu等。,“揭示乳腺癌风险特征:由在线网络应用程序赋予的生存聚类分析”,《未来肿瘤学》,第1期。0,2023。
摘要。一种粘合剂,以各种名称(例如胶水,水泥,粘液或糊状)而闻名,是一种材料,用于将两个不同物品的一个或两个表面应用于一个或两个表面,以将它们团结起来并承受将它们拉开的任何尝试。粘合剂可以自然发生或人为地生产。在这种特定情况下,讨论集中于使用丙烯酸和乙酸聚乙烯酯(PVA)作为所考虑的粘合剂的基本材料。在制定粘合剂的过程中,测量了大约2升水,然后倒入用作混合容器的塑料桶中。随后,将0.7千克碳酸钙引入水桶中,并搅拌以进行彻底混合。之后,将每个丙烯酸和乙酸聚乙烯酯(PVA)添加到桶中的混合物中,并有效地搅拌直至实现均匀且良好的混合物。然后将0.1 kg的硝基醇和0.07 kg的bamacol粉末掺入混合物中,以连续搅拌,以确保将其掺入混合物中。此外,将0.05千克的福尔马林作为防腐剂引入,并搅拌大约十分钟以最终确定产品。然后,通过测试其在各种材料组合上的键合特性来评估粘合剂的性能,包括木材到木材,纸箱到纸 - 卡顿,纸纸到纸,木材到金属和纸与木材的应用。结果表明,使用时,白色粘合剂可作为多功能,应用于多功能产品。测试了各种特性,例如干燥时间,粘结强度和pH水平,以确定粘合剂的最佳品质。此外,还彻底检查了配制粘合剂的保质期。最终,粘合剂证明了其在粘结纸纸,纸上和其他包装材料中的有效性,展示了其在各种应用中的多功能性和实用性。
[1] K. R. Walker和G. Tesco,“创伤性脑损伤后认知功能障碍的分子机制”,《衰老神经科学》的前沿,第1卷。5,p。 29,2013。[2] S. Jiang,S。Chen和S. Chen,“新型抗菌棉纺织品,配以Siloxane硫磺丙基贝因,” Fiber Soc。春天,pp。263-264,2011。[3] S. Chen等。,“环保抗菌棉纺织品,配以硅氧烷硫丙基贝素,” ACS Applied Material&Interfaces,第1卷。3,不。4,pp。1154-1162,2011。[4] S. Chen,S。Chen,S。Jiang,Y。Mo,J。Tang和Z.GE,“硅氧烷硫烷抗微生物剂的合成和表征,”,《表面科学》,第1卷。605,否。11-12,pp。L25-L28,2011。[5] S. Chen等。,“含有含反应性硅氧烷的性硫丙基的研究,用于抗菌材料中”,“胶体和表面B:Biointerfaces,第1卷。85,否。2,pp。323-329,2011。[6] S. Jiang,Y. Liu,T。Wang,Y。Gu和Y. Luo,“基于MaleImide-Thiol结合的新型抗菌水凝胶的设计和制备”,《 ISSN》,第1卷。2766,p。 2276,2023。 [7] S. Jiang和T. Zhang,“对生物相容性的马来酰亚胺修饰的葡萄糖和透明质酸水凝胶系统的研究”,“精细化学工程”,pp。 100-109,2023。 [8] S. Jiang,Y。Liu和T. Wang,“对神经退行性疾病的新型生物相容性快速凝胶水凝胶的研究”,《生物医学科学与技术研究杂志》,第1卷。 50,没有。2766,p。 2276,2023。[7] S. Jiang和T. Zhang,“对生物相容性的马来酰亚胺修饰的葡萄糖和透明质酸水凝胶系统的研究”,“精细化学工程”,pp。100-109,2023。[8] S. Jiang,Y。Liu和T. Wang,“对神经退行性疾病的新型生物相容性快速凝胶水凝胶的研究”,《生物医学科学与技术研究杂志》,第1卷。50,没有。3,pp。1149-1157,2023。[9] S. Jiang,Y。Liu和Y. Gu,“用于组织工程的基于肽的短多糖水凝胶:迷你综述。”[10] D. Jhala和R. Vasita,“关于模仿人造干细胞生态位的细胞外基质策略的综述,” Polymer评论,第1卷。55,否。4,pp。561-595,2015。[11] M. Bahram,N。Mohseni和M. Moghtader,“水凝胶和一些最新应用的简介”,在水凝胶的分析和应用中的新兴概念中:Intechopen,2016。[12] T. R. Hoare和D. S. Kohane,“药物输送中的水凝胶:进度和挑战”,Polymer,第1卷。49,否。8,pp。1993-2007,2008。[13] S. Jiang,Y。Gu和E. Kumar,“基于五种机器学习算法的磁共振成像(MRI)脑肿瘤图像分类”,“云计算和数据科学,pp。122-133,2023。[14] S. Jiang,Y。Gu和E. Kumar,“通过电子健康记录使用人工智能技术的中风风险预测,”人工智能演变,pp。88-98,2023。[15] J.Song,Y。Gu和E. Kumar,“基于光谱聚类算法的胸部疾病图像分类”,有关计算机科学的研究报告,pp。77-90,2023。[16] Y. Gu等。,“揭示乳腺癌风险特征:由在线网络应用程序赋予的生存聚类分析”,《未来肿瘤学》,第1期。0,2023。
在聚合物机械化学领域 [10,11],OFP [12,13] 可以实现光学可视化,并监测不同材料体系(从传统的热固性材料和热塑性材料 [14–18] 到蛋白质)内不同长度尺度上的机械诱导事件。[19–23] 在机械生物学领域也可以找到类似的概念。[24–27] 在施加力时,OFP 会发生构象、构型或组成键异构化反应,从而改变其在吸收、荧光或化学发光方面的光学性质。[28] 材料科学中高分辨率显微镜技术的出现甚至使我们能够追踪亚微米尺度的宏观材料损伤。[29–37] 因此,OFP 有助于开发具有改进性能的材料方法。 [38] 尽管 OFP 已成功用于研究合成和生物大分子材料的损伤,但令人惊讶的是,尚未使用 OFP 研究粘合剂的失效。现有的研究粘合剂疲劳和断裂的方法[39]包括目视检查、[40] X 射线光电子能谱、[41,42] 质谱 (MS)、[43,44] 傅里叶变换红外光谱、[42,45] 和接触角测量。[42] 然而,这些技术都无法对胶水成分的机械状态提供空间分辨的光学反馈。我们在此报道了一种由阳离子力响应蛋白 FRET 对和阴离子芳香族表面活性剂的静电共聚形成的生物胶。[46,47] 因此,我们将 FRET 供体荧光团连接到力响应的 FRET 受体荧光蛋白。在机械测试过程中,施加力会改变 FRET 效率,从而改变发射光谱以及供体荧光寿命。我们使用这些蛋白质粘合剂粘合高能和低能表面,以对其断裂行为进行详细的光学分析。机械损伤
高速计算机和无线通信系统的抽象在电子市场中变得越来越流行,这些面向通信的产品需要高包装密度,时钟速率和更高的GB/s开关速度。在这项工作中表征了用于以1 GB/s运行的应用程序的多层翻转球网阵列(FCBGA)软件包。包装的电特性超出了1 GHz的必要性。在本文中,我们介绍了使用时域反射测量法(TDR)方法互连FCBGA软件包的测量和仿真结果。模拟和测量结果,以建立适当的FCBGA互连电路模型。电力网络的寄生虫可以通过TDR,矢量网络分析仪(VNA)和阻抗分析仪(IA)来测量。这项工作中生成的完整模型针对的是在商业电子应用中具有广泛用途的高速系统片(SOC)设备。关键字翻转芯片球网格阵列(FCBGA),电特性,时域反射仪(TDR),矢量网络分析仪(VNA),片上系统(SOC)1。简介半导体的国际技术路线图(ITRS)驱动程序章节介绍了未来半导体行业发展的总体SOC环境[1]。它处理大型功能块,例如RF,CPU,硬件元素(数字和模拟/混合信号块),软件元素,胶水逻辑,功能特定内核,通信接口和软件堆栈,作为可重复使用的和预验证的组件。这些组件可以插入许多不同的SOC中,这是减少必须完成新产品必须完成的低级设计工作量的一种方法[2] [3]。虽然预计通信市场将保持显着的频率线索,但高速序列方案的渗透到微处理器,ASIC和SOC市场的形式
独立性,并受到同龄人的高度影响。由于各种因素,例如内分泌变化,导致胰岛素抵抗,不稳定的饮食和运动模式,对治疗方案的依从性不佳,饮食失调和风险行为,许多因素的代谢控制中,代谢控制的许多青少年(T1D)经历了恶化。[1]。此外,青春期女孩可能会经历激素变异,情绪波动和胰岛素抵抗的变化,从而导致月经周期中胰岛素需求的变化[2]。月经问题在T1D女性中比一般人群更常见。他们也可能经历延迟的初潮,早期的天然症,妊娠较少,而死产也比非糖尿病患者更多[3]。寡头疾病,一些T1D的女孩在整个月经周期中显示出可变的胰岛素需求[2]。胰岛素抵抗趋向于在黄体期OVU和峰值之前增加,在此阶段发生降血糖发作较少[5]。在黄体期和月经期间高雌二醇和孕酮水平可能导致胰岛素抵抗的增加[5]。此外,较高的孕激素水平可能导致热量和/或碳水化合物摄入量增加,从而进一步升高血糖水平[2]。然而,月经周期变化对血糖控制和胰岛素敏感性的影响在患有T1D的青少年女孩之间有所不同,强调了个性化管理的重要性[2,6]。在月经周期期间,患有经前综合征(PMS)的女性通常会增加血糖水平或糖尿的增加,因此需要对其胰岛素剂量进行调整。这表明有助于PMS的体细胞和情绪症状的因素也可能影响T1D女性的尤利克血症[7]。鉴于T1D女性的众多因素会影响血液glu胶水平和血糖控制,因此人们期望对该主题的重大研究重视。但是,缺乏可用的数据,即使对于CSII的数据,也没有泵制造商开发了特定性别的胰岛素输注概况[8]。这项研究旨在评估月经周期对T1D接受多次每日胰岛素注射的青春期女性中血糖控制和基底胰岛素需求的影响。
1. Nakod PS、Kim Y、Rao SS。三维仿生透明质酸水凝胶用于研究胶质母细胞瘤干细胞行为。生物技术与生物工程。2020;117(2):511-522。doi: 10.1002/bit.27219 2. Nakod PS、Kim Y、Rao SS。仿生模型用于研究胶质母细胞瘤干细胞的微环境调节。癌症快报。2018;429:41-53。doi: 10.1016/j.canlet.2018.05.007 3. Stankovic T、Randelovic T、Dragoj M 等人。胶质母细胞瘤体外仿生模型——一种有前途的药物反应研究工具。药物耐药性更新。 2021;55:100753。doi:10.1016/j.drup.2021.100753 4. Wen PY、Weller M、Lee EQ 等人。成人胶质母细胞瘤:神经肿瘤学会(SNO)和欧洲神经肿瘤学会(EANO)对当前治疗和未来方向的共识审查。神经肿瘤学。2020;22(8):1073-1113。doi:10.1093/neuonc/noaa106 5. Rape A、Ananthanarayanan B、Kumar S。模拟胶质母细胞瘤微环境的工程策略。Adv Drug Deliv Rev。2014;79-80:172-183。 doi: 10.1016/j.addr.2014.08.012 6. Nakod PS、Kim Y、Rao SS。星形胶质细胞和内皮细胞对多细胞球体中胶质母细胞瘤干性标志物表达的影响。Cell Mol Bioeng。2021;14:639-651。doi: 10.1007/s12195-021-00691-y 7. Ngo MT、Harley BAC。血管周围信号改变胶质母细胞瘤的整体基因表达谱和对明胶水凝胶中替莫唑胺的反应。生物材料。2019;198:122-134。doi: 10.1016/j。 biomaterials.2018.06.013 8. Dirkse A, Golebiewska A, Buder T, 等。胶质母细胞瘤中干细胞相关异质性是由微环境塑造的内在肿瘤可塑性引起的。Nat Commun。2019;10(1):1787。doi: 10. 1038/s41467-019-09853-z 9. Zhao W, Li Y, Zhang X。癌症中的干细胞相关标志物。Cancer Transl Med。2017;3(3):87-95。doi: 10.4103/ctm.ctm_69_16
在凯文后的重新定义时代,温度可追溯性受到开尔文(MEP-K-19)定义的CCT批准的机制。开发新一代的基于光学的主要温度测量方法可以直接在原位中直接使用,这将满足当前需要重新校准传感器的需求。同时,量子技术的最新发展需要非常控制的原位温度计(直接集成到量子芯片集中),以直接在发生量子测量的地方进行测量。在Empir JRP 17FUN05摄影项目中,已经制造了最新的光学机械和光子谐振器,并且已经实施了可追溯的温度测量值,以准确对这些新温度传感器的计量验证。在较大的温度范围内证明了使用光学传感器的实用相噪声温度计:从4 K到300K。但是,在大于(高于300 K)温度范围内测量的测量时,需要一系列光学机械传感器来减少相应的不确定性。在低温温度(低于10 K)下,量子光学技术可以实现准确的初级温度计(不确定性<0.2 K)。量子相关温度法作为替代初级温度计技术集成在纳米级,并且对磁场不敏感。除了初级温度测定法外,高精度和分辨率还需要光子温度计。对于实际应用(低温温度),芯片通过光纤需要进行光学耦合。光子温度计是一种基于热光效应的芯片量表技术,即光波导的折射率的温度依赖性,它决定了光学谐振器的谐振频率的温度,从而导致非常高的温度分辨率(SUBMK)。最低工作温度是通过光学波导的热效应施加的,光学波导对于低于80 k的硅变得很小。光子温度计具有很高的灵敏度(硅硅的70 pm/k),但是它需要在此处开发的其他类型的温度计,因为它是一种非优质的热量计质,因为它是其他类型的热量表。可以通过将芯片固定在纤维本身上来实现,但是为了确保连接技术的可重复性和所使用材料的兼容性的可重复性,需要在较大的温度范围内测试该方法。为此,可以考虑基于胶水连接的标准耦合方法。但是,由于低温温度下胶的热应力,它们的使用受到限制。作为一种替代方案,已经提出了激光焊接方法将融合的二氧化硅纤维与集成微晶状体的硼硅酸盐纤维底物进行硼硅酸盐玻璃底物。需要开发应力补偿技术和新颖的光学设计,以促进广泛的温度范围光学平台。最后,光子
圆形的WLAN路由器,带有可持续铝制的车身WLAN路由器,由铝制成,配备多功能多功能表面,并根据欧盟最新的生态设计标准制造:这是德国 - 官员联盟研究和行业党的目标。在设计中使用的塑料及其电路板的尺寸大大降低了,因此建议的路由器提供了更高的资源效率和循环性。WLAN路由器是当今连接世界中普遍存在的不可避免的一部分。随着雷达技术和案例设计的不断发展,新的机会正在开放,以提高性能,增加更多功能并使系统更好地适合环境。正确的材料选择不仅是节省成本的一种方法。在通往循环经济的途中,它可以成为更可持续的产品设计的电动机。铝已经是IT和通信(ICT)领域的常见景象,用于从智能手机到笔记本电脑或移动通信收发器的任何事物。该材料可以有效地回收,以至于仅在两个产品周期之后,其碳足迹小于可比塑料产品的碳足迹。与波兰研究机构Lukasiewicz ITR和INM以及姐妹Fraunhofer Institute IEM合作,Fraunhofer IZM的研究人员正在测试铝在通用WLAN路由器中使用的潜力。这需要一项已建立的技术来创建3D模式的互连设备,以便能够将天线直接集成到弯曲的铝表面中。为了实现这一壮举,该表面经过特殊适应的3D MID技术。同时,研究人员正在研究一个生态设计概念,该概念将有助于降低所需的材料量,并使成品更好地进行回收。这种联合技术和生态设计方法有望证明如何以真正的循环经济来设计未来的ICT设备。直接激光结构为多功能表面以外的铝选择外观,路由器也以其多功能表面而脱颖而出。天线和传感器直接集成到外壳中,这允许对成品进行紧凑而有效的设计,同时还允许其内部有助于在操作过程中进行热量。这项技术可以用激光直接结构处理涂层,但仅在塑料表面上使用。涂层本身与射频应用非常有效,并且可以容纳6 GHz的RF结构或天线。有趣的是,案例的顶部和底部具有相同的设计,这意味着在生产过程中需要更少的专业工具,从而使制造更便宜,更快。两半夹在没有胶水或螺钉的情况下,确保持久拟合,但