在神经退行性疾病和衰老中,小胶质细胞,脑免疫细胞获得了疾病相关的小胶质细胞特征,这些特征可能有利于早期疾病状态的组织修复,但是在晚期,在晚期恢复了脑稳态的能力,并保护神经元,并保护神经元,并因细胞死亡而保护神经元。衰老的小胶质细胞表现出与分泌相关的衰老表型,并且代谢受损,而NAD耗竭,该表型在基因组完整性和细胞代谢中起着核心作用。新兴证据强调了衰老和神经退行性疾病中NAD的较低水平,因此Sirtuins的活性受损。在这项研究中,我们研究了小胶质细胞中衰老过程中发生的变化,开发了一种慢性暴露(长达30天)的体外模型至高铁浓度。最初,铁处理会诱导小胶质细胞增殖,增强吞噬作用,并提高NAD水平表明小胶质细胞激活。经过30天的治疗后,小胶质细胞获得了一种胶状表型,其特征是以增殖停滞,吞噬作用降低,SASP标记的上调,EVS产生显着增加。生化,转录组和代谢组分析显示,铁处理的小胶质细胞中NAD和NADPH含量的水平降低,与CD38的表达增加(主要NAD摄入酶)的表达增加。此外,与对照小胶质细胞相比,在老年/衰老细胞中下调的Sirtuin 6的水平和活性大大降低。。衰老的小胶质细胞与健康的小胶质细胞诱导的健康细胞中的衰老特征共培养,这表明Saßgal和P21阳性细胞的显着增加以及NAD水平降低了。结论是NAD的提升可能代表了一种有用的策略,可以抵消衰老和衰老对健康小胶质细胞的传播。
生物电子学可以在组织和设备界面上传导信号,以测量和调节用于医疗保健监测和疾病治疗的生物学活动。当前,广泛使用了多种生物电子设备,例如胶状传感器,心脏起搏器和静电图。然而,由于体内的机械菌株和复杂的生物流体,传统的刚性电子设备无法有效地满足长期舒适性,预先限制和稳定性的要求。在过去的几年中,以可穿戴的纺织品的形式越来越兴趣柔性和可拉伸的生物电子学,可穿着的皮肤和植入物内部,旨在遵守非平面和动态组织。因此,我们很高兴在先进的功能伴侣上组织这一特殊问题。我们在这里强调了材料,结构,功能和界面,用于软性生物电子学,收集了6份评论,1个进度报告和11篇令人兴奋的领域的文章。传统的电子设备通常是刚性,平面,干燥和静态的,而生物组织则是柔软,曲线,离子和动态的,因此应设计新材料以减少这些差异以建立有效且可靠的接口。pooi参见李和同事(文章1907184),小陈和同事(文章编号1909540),以及穆里米塔·科塔尔(Moumita Kotal)和伊尔克万(Moumita Kotal)和伊尔克万(Ilkwon)和同事(文章1910326)讨论了expermal and oblavelable and car的基础,并讨论了car的基础和材料设计。纳米材料,用于导电聚合物和水凝胶。还解决了体内生物电子学长期稳定性的挑战。除了材料外,设备结构和实施技术还广泛研究以减少组织损伤并提供长期的信号稳定性,主要进步和代表性的例子由Fei Pei和Bozhi Tian(文章编号1906210)和Kyung-In Jang-In Jang and Taeyoon Lee和Taeyoon Lee和Co-Workers(文档编号1910026)仔细强调。传感器是探索最多的生物电子设备的一种类型。对于触觉传感器,Darren J. Lipomi和同事(文章编号1906850)报告了触觉设备的刺激性有机材料的开发。Zhenan Bao及其同事(文章编号1903100)通过使用金字塔微结构设计,提出了一种可调,一致和可再现的电容压力传感器的有效方法。
能源可用性和温室气体排放已成为与传统不可再生来源过度消耗有关的问题(Wang等,2013)。迫切需要开发和寻找可再生绿色能源资源,同时迫切需要更好的能源存储系统。超级电容器引起了广泛的兴趣(Wang等,2007; Sarno等,2015),因为它们的高能量密度,出色的周期稳定性,高特异性电容和长寿(Xia等,2012)。根据不同的储能机制,可以将超级电容器分为两个主要类别(Yang等,2012):双层电容器和伪能力。在双层电容器(例如,碳材料)中,电极通过使用界面双层的静电电容来存储能量。伪电容器的电容比双层电容器更高,它通过快速且可逆的氧化还原反应保持电荷。作为电极材料,金属氧化物由于其在氧化还原反应中的高电容特性而引起了极大的兴趣。已经使用了许多过渡金属氧化物和导电聚合物。氧化铝具有许多独特而有吸引力的特性,例如较大的特定表面积,良好的导热性,对大多数酸和碱的惰性,机械强度和刚度,耐磨性,高吸附能力以及热稳定性。此外,Al 2 O 3也是无毒的,高度磨料且廉价的(Mallakpour和Khadem,2015; Mirjalili等,2011; Gunday等,2019)。这些特性使Al 2 O 3适用于各种应用,例如催化剂,传感器和超级电容器。尤其是,据报道,由γ-Al 2 O 3纳米颗粒,多脏和氧化石墨烯还原构成的三元电极的超级电容器性能(Azizi等,2020)。证明了Al 2 O 3在改善和增强导电聚合物电化学稳定性和电容的有益作用,这要归功于催化的氧化还原反应能力。然而,据我们所知,唯一具有高纯度和形态均匀性的氧化铝构成的电极的电化学特性从未被报道过。为了形成稳定,廉价且执行的电极,在这里,我们报告了由热等离子体技术制备的Al 2 O 3粉末用于超级电容器应用。在高纯度和细粉合成过程中,避免了通常在化学过程中所需的复杂且昂贵的制备步骤的蒸气相反应,即降水和纯化,特别有助于生产具有较窄尺寸分布的毛胶状颗粒(Iovane等,2019; Hong和Yan。,2019; Hong and Yan,2018)。扫描电子显微镜(SEM),热重分析(TG),傅立叶
北方泥炭地是碳循环的重要生态系统,因为它们将世界的1/3储存在全球陆地的约3%中。这种高碳存储能力使它们成为全球气候变暖引起的增加碳排放的关键缓解策略。在泥炭地等高碳储存系统中,土壤动物群落是有机物和营养循环的次要分解的,这表明它们在碳循环中起着重要作用。实验表明,变暖会以可能将泥炭地从碳水槽转移到来源的方式影响植物和微生物群落。尽管以前的研究发现气候变化操纵对土壤群落的影响可变,但预计变暖将主要通过降低水分含量来影响土壤社区的组成,而升高的CO 2大气浓度只有间接而弱,而弱的大气浓度则是如此。在这项研究中,我们使用了一个大型泥炭领域的实验来测试土壤微动脚类(Oribatid和Mesostigmatid mite,以及Collembolan物种的丰度,丰富性,丰富性和社区成分)对一系列实验性温暖温度(在0°C和+9°C之间的跨度)中响应4年,以响应4年的环境。 (云杉)实验。在这里,我们发现变暖显着降低了表面泥炭湿度,这又减少了物种微促动物的丰富度和丰度。特别是在较低的湿度水平下,oribatid和中骨螨,胶状和整体微促动物的丰富度显着降低。此外,在较高的水分水平下,大量的微肢体数量增加。在一起分析或分开时,均未影响微量关节脚架,除了在变暖下显着增加的中骨质体。 在社区层面,随着时间的流逝(除Collembolans除外),社区的变化很大,并且水分是解释社区物种组成的重要驱动力。 我们期望云杉实验治疗对土壤动物生物多样性的累积和互动效应继续出现,但我们的结果已经表明效果是均未影响微量关节脚架,除了在变暖下显着增加的中骨质体。在社区层面,随着时间的流逝(除Collembolans除外),社区的变化很大,并且水分是解释社区物种组成的重要驱动力。我们期望云杉实验治疗对土壤动物生物多样性的累积和互动效应继续出现,但我们的结果已经表明效果是
1。药物产物的名称嗜血杆菌流感型B型结合疫苗i.p.(冻干)。2。QUALITATIVE AND QUANTITATIVE COMPOSITION Haemophilus influenzae Type b Conjugate Vaccine (Sii HibP RO ) is a freeze-dried vaccine of purified polyribosyl ribitol phosphate capsular polysaccharide (PRP) of Hib, covalently bound to tetanus toxoid (carrier protein).HIB多糖是由H流感型B型菌株的囊多糖制备的,激活后与破伤风毒素偶联。破伤风毒素是通过提取,硫酸铵纯化和福尔马林从破塔尼氏梭菌培养物来制备的。疫苗符合WHO和I.P.的要求在WHO中概述的方法测试时,TRS 897(2000)和i.p.每剂量为0.5 ml,含有:纯化的囊囊多糖(PRP)共轭10 mcg破伤风毒素(载体蛋白)19至33 mcg稀释剂:用稀释剂重新植入了流感型流感的稀释剂。3。药物形式嗜血杆菌流感型B型结合疫苗i.p.是一种纯化的HIB的纯化多氧0个蛋白磷酸磷酸磷酸胶质胶状多糖(PRP)的冷冻干燥疫苗,共价结合到破伤风毒素(载体蛋白)。4。临床细节4.1治疗指示SII HIBP RO(B型流感型B型结合物疫苗i.p.)用于针对所有6周至5岁儿童的B型流感型流感嗜血杆菌的主动免疫。sii hibp ro(嗜血杆菌型B型结合疫苗i.p.)不能预防其他类型的流感烟草或其他生物引起的脑膜炎。4.2剂量和给药剂量SII HIBP RO(B型流感B型偶联疫苗i.p.)指示为6周至60个月大的儿童预防由流感嗜血杆菌引起的侵袭性疾病。在6周至6个月大的婴儿中,免疫剂量是在大约4周间隔内给出0.5 mL的三个单独注射。以前7至11个月大的未接种婴儿应接受两次单独的注射,相距约2个月。以前未接种疫苗的12至14个月大的儿童应接受一次注射。所有接种疫苗的儿童应在12-18个月大的时候接受单一助推器剂量,但不少于先前剂量后2个月。以前未接种疫苗的儿童15至60个月大
Glymphatic系统是神经退行性疾病中的新兴靶标。在这里,我们通过一种基于扩散的技术在遗传额颞痴呆症中研究了胶状系统的活性,该技术称为扩散张量张量图像沿血管周空间。我们研究了291名具有症状或症状性额颞痴呆的受试者(112染色体9开放式阅读框架72 [C9ORF72]扩张,119个带有颗粒蛋白[GRN]突变[GRN]突变,微管与微管相关的蛋白质Tau [mapt] tau [mapt]和83个非营业室(包括50岁的年轻人)(包括50岁的年轻人)(包括50岁)。我们通过计算侧心室侧心体平面的x-,y和z轴的扩散度来计算沿血管周空间指数的扩散张量图分析。临床阶段和基于血液的标记。 180名参与者的子集接受了认知随访,总共进行了640个评估。 沿血管周空间指数的扩散张量图分析在症状额额痴呆(估计的边际平均值±标准误差,1.21±0.02)中低于旧的非载波(1.29±0.03,p = 0.009),并且比较症状(1.30±0.009),并且症状突变携带者(1.30±0.01,p <0.001,p <0.001)。 In mutation carriers, lower diffusion tensor image analysis along the perivascular space was associated with worse disease severity ( β = − 1.16, P < 0.001), and a trend towards a significant association between lower diffusion tensor image ana lysis along the perivascular space and higher plasma neurofilament light chain was reported ( β = − 0.28, P = 0.063).临床阶段和基于血液的标记。180名参与者的子集接受了认知随访,总共进行了640个评估。沿血管周空间指数的扩散张量图分析在症状额额痴呆(估计的边际平均值±标准误差,1.21±0.02)中低于旧的非载波(1.29±0.03,p = 0.009),并且比较症状(1.30±0.009),并且症状突变携带者(1.30±0.01,p <0.001,p <0.001)。In mutation carriers, lower diffusion tensor image analysis along the perivascular space was associated with worse disease severity ( β = − 1.16, P < 0.001), and a trend towards a significant association between lower diffusion tensor image ana lysis along the perivascular space and higher plasma neurofilament light chain was reported ( β = − 0.28, P = 0.063).对LON gitudinal数据的分析表明,低扩散张量张量图分析沿基线处的血管周空间的患者比平均平均(P = 0.009)或高(P = 0.006)扩散张量张量图分析沿周围空间空间指数的患者要快。使用非侵入性成像方法作为Glymphatic System功能的代理,我们在遗传额颞痴呆的症状阶段表明了Glym phatic系统异常。类化学系统的这种度量可以阐明人类额颞痴呆中的病理生理过程,并促进遗传额额质痴呆的早期试验。
(材料科学与工程系,康奈尔大学,纽约州纽约市,14850,美国)“通过分子在有机无机纳米材料界面上通过分子形成和功能”互动在基本结构形成过程中起着至关重要的作用,以及有机构造组合材料的功能和特性。本演讲将概述基于低摩尔质量表面活性剂的有机分子自动化现象以及大分子分子块共聚物的这种功能性纳米杂化物的化学和物理。这些现象用于构造各种定期多孔无机固体,包括绝缘体,半导体,金属和超导体。工作将涵盖在热力学平衡处或接近的结构形成,以及系统远离平衡的系统。实验将与理论预测进行比较,以提供对形成原理和特定特性的物理见解。所描述的工作的目的是了解基本的基本化学,热力学和动力学形成原理以及纳米结构 - 普罗托关系相关性,从而使结果能够在广泛的材料系统中对结果进行概括。将表明,随着针对原子结晶固体建立的概念被转化为介于镜的周期性crys-talline固体 - 从软物质自组装中衍生出的原子结晶固体,这些材料中的软凝结和硬凝结物理学之间的区别开始变得模糊。参考:1。2。SCI。 11,1261-1270(2018)。 3。SCI。11,1261-1270(2018)。 3。11,1261-1270(2018)。3。此类材料表现出从Otpics/纳米光子学到运输到量子现象的大量新物质,包括量子现象,包括经常性和受拓扑保护的量子状态。在可能的情况下,谈话将尝试将循环从高级材料的基本方面整理到应用到应用,从纳米医学到分离过程,再到储能和转换。K。Ma,Y。Gong,T。Aubert,M。Z。Turker,T。Kao,P。C。Doerschuk,U。Wiesner,由表面活性剂胶束导演的高度对称,超质无机笼子的自组装,自然558(2018),577-580。 J. G. Werner,G。G。G.Rodríguez-Calero,H。D。Abruña,U。Wiesner,块共聚物衍生的3-D连接多功能多功能多功能甲状腺纳米杂种,用于电气储存,能量环境。 y。 Sun,K。Ma,T。Kao,K。A. Spoth,H。Sai,D。Zhang,L。F. Kourkoutis,V。Elser,U。Wiesner,U。Wiesner,介孔二氧化硅纳米粒子的途径,带有DodeCagonal Tilling,Nat,Nat。 社区。 8(2017),252; doi:10.1038/s41467-017-00351-8。 4。 S. W. Robbins,P。A. Beaucage,H。Sai,K。W. Tan,J。P. Sethna,F。J. Disalvo,S。M. Gruner,R。B. Van Dover,U。Wiesner,U。Wiesner,Block共聚物自组装指导的介导性甲状腺高胶状超级con-SuperCon-puctors Science-Science-Science,e11015。 5。 K。W. Tan,B。Jung,J。G. Werner,E。R. Rhoades,M。O. Thompson,U。Wiesner,瞬态激光诱导的诱导的层次层次多孔结构,来自块共聚物自我组装,科学349,54-58(2015)。 6。 社区。 5,3247(2014)。 7。 transl。 Med。 8。K。Ma,Y。Gong,T。Aubert,M。Z。Turker,T。Kao,P。C。Doerschuk,U。Wiesner,由表面活性剂胶束导演的高度对称,超质无机笼子的自组装,自然558(2018),577-580。J. G. Werner,G。G。G.Rodríguez-Calero,H。D。Abruña,U。Wiesner,块共聚物衍生的3-D连接多功能多功能多功能甲状腺纳米杂种,用于电气储存,能量环境。y。Sun,K。Ma,T。Kao,K。A. Spoth,H。Sai,D。Zhang,L。F. Kourkoutis,V。Elser,U。Wiesner,U。Wiesner,介孔二氧化硅纳米粒子的途径,带有DodeCagonal Tilling,Nat,Nat。社区。8(2017),252; doi:10.1038/s41467-017-00351-8。4。S. W. Robbins,P。A. Beaucage,H。Sai,K。W. Tan,J。P. Sethna,F。J. Disalvo,S。M. Gruner,R。B. Van Dover,U。Wiesner,U。Wiesner,Block共聚物自组装指导的介导性甲状腺高胶状超级con-SuperCon-puctors Science-Science-Science,e11015。5。K。W. Tan,B。Jung,J。G. Werner,E。R. Rhoades,M。O. Thompson,U。Wiesner,瞬态激光诱导的诱导的层次层次多孔结构,来自块共聚物自我组装,科学349,54-58(2015)。6。社区。5,3247(2014)。 7。 transl。 Med。 8。5,3247(2014)。7。transl。Med。8。Z. Li,K。Hur,H。Sai,T。Higuchi,A。Takahara,H。Jinnai,S。M. Gruner,U。Wiesner,Wiesner,链接了三维网络二进制二进制金属纳米纳米粒子 - 特里布洛克terpolymer terpolymer superstruc- superstruc- sustruc- supstruc- supstruc- supstruc- nat,NAT,链接实验和理论。E. Phillips, O. Penate-Medina, P. B. Zanzonico, R. D. Carvajal, P. Mohan, Y. Ye, J. Humm, M. Gönen, H. Kaliagian, H. Schöder, H. W. Strauss, S. M. Larson, U. Wiesner, M. S. Bradbury, Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe,科学。6(2014),260RA149。 H。Sai,K。W. Tan,K。Hur,E。Asenath-Smith,R。Hovden,R。Hovden,Y。Jiang,M。Riccio,M。Riccio,D。A. Muller,D。A. Elser,V。Elser,L。A. Estroff,L。A. M. Gruner,S。M. Gruner,U。Wiesner,U。Wiesner,U。Wiesner,U。Wiesner,U。Wiesner,Hierarchical Porof to Block Copolymers copolymers,Science 341,530-533-53.34(530)。 9。 M. A. Noginov,G。Zhu,A。M。Belgrave,R。Bakker,V。M。Shalaev,E。E. E. E. Narimanov,S。Stout,E。Herz,E。Herz,T。Suteewong,T。Suteewong,U。Wiesner,U。Wiesner,Spaser基于Spaser的Nanolaser的演示,Nature 460(2009),1110-1112。6(2014),260RA149。H。Sai,K。W. Tan,K。Hur,E。Asenath-Smith,R。Hovden,R。Hovden,Y。Jiang,M。Riccio,M。Riccio,D。A. Muller,D。A. Elser,V。Elser,L。A. Estroff,L。A. M. Gruner,S。M. Gruner,U。Wiesner,U。Wiesner,U。Wiesner,U。Wiesner,U。Wiesner,Hierarchical Porof to Block Copolymers copolymers,Science 341,530-533-53.34(530)。9。M. A. Noginov,G。Zhu,A。M。Belgrave,R。Bakker,V。M。Shalaev,E。E. E. E. Narimanov,S。Stout,E。Herz,E。Herz,T。Suteewong,T。Suteewong,U。Wiesner,U。Wiesner,Spaser基于Spaser的Nanolaser的演示,Nature 460(2009),1110-1112。
对神经胶质细胞在脑疾病研究中的作用的新研究经常集中在神经元上,但它们可能只揭示了故事的一部分。相反,被称为GLIA的辅助细胞可以保存在许多脑部疾病中看到的神经元通信的答案。具体而言,据称疾病引起的胶质状态被认为是疾病发作和进展的关键因素。现在,新的大脑赠款将支持对各种脑部疾病(例如阿尔茨海默氏病),MS,癫痫,ALS和其他神经系统疾病等各种脑部疾病的行为进行四年研究。Gliodem Brains项目将与瑞士生物技术公司的神经科学家合作伙伴见面,与瑞士生物技术公司的神经科学家合作,以提供新的见解。该项目旨在发现使用人体外模型的神经元功能的反应性神经胶质作用的后果。这种合作努力结合了学术专业知识和行业创新,以促进我们对脑部疾病的理解,并有可能为针对Glia的创新治疗铺平道路。减轻神经胶质转化神经科学研究人员教授。埃莉·霍尔(Elly Hol) Jeroen Pasterkamp,Frank Meye博士,Christiaan Huffels博士,Elena Daoutsali博士,Laura Pieper博士和新的博士生Arthur Ermakov将与Gliapharm合作,以衡量人IPSC和类型模型中神经元 - 葡萄球菌相互作用的变化。他们将开发新的读数并测试新型的药理学和遗传方法,以改善反应性神经胶质病。“以前,大多数大脑研究都集中在脑部疾病中的神经元上。该项目中使用的模型包括星形胶质细胞和小胶质细胞,在压力和毒性条件下,细胞类型如何相互作用并引起网络范围的效果,提供了更清晰,更相关的情况。“幸运的是,现在越来越多的关注对神经胶质细胞的行为,这为药物开发提供了新的机会。在我们的实验室中,一个团队正在研究创新技术,以更好地研究神经胶质病。与Gliapharm一起,我们将研究专门针对神经胶质病的新药物,以便将来更好地治疗患有脑部疾病的人。我们对大脑的资金感到非常满意,这使这项合作成为可能。” Gliacharm的科学创始人Pierre Magistretti教授补充说:“这种国际合作融合了独特的学术和工业专业知识。一起,我们旨在开发创新模型,以模仿各种神经疾病中神经胶质细胞的基本功能障碍。这些模型对于创建专门针对神经胶质细胞的新型疗法至关重要,在治疗这些条件的治疗中开辟了新的视野。”请继续关注即将到来的Gliodem开发!关于大脑的大脑伙伴关系是一个共同的赠款机会,以下卫生基金联手:阿尔茨海默氏症Nederland,刺激了MS Research,Emepepsienl和Hersenstichting。大脑起源于荷兰大脑倡议(Nationaal Plan Hoofdzaken),该运动致力于为大脑和/或心理疾病的人创建解决方案。这些化合物旨在通过特异性靶向神经胶质细胞来促进脑能量代谢。荷兰大脑计划通过在各个学科中建立联系并与其他组织合作来实现这一目标。这个合作的大脑项目已与Health〜Holland,顶级部门生命科学与健康提供的PPS赠款共同筹集,以刺激公私伙伴关系。有关健康〜Holland和荷兰大脑计划的更多信息,请访问www.health- Holland.com和www.nationaalplanhoofdzaken.nl。涉及胶质胶状磷酸盐是一家瑞士生物技术公司,它开发了治疗神经和精神疾病的创新方法。Gliapharm于2016年创建为瑞士联邦技术研究院Pierre Magistretti教授(EPFL,瑞士)的衍生公司,该公司是脑代谢和神经胶质细胞生物学领域的领先研究实验室。GliaPharm通过其内部专有药物发现平台建立了一系列化合物管道,该平台着眼于神经胶质细胞功能。Gliapharm SA联系人:Sylvain Lengacher博士,联合首席执行官Magistretti,Co-Ceo sylengach@gliapharm.com amagistretti@gliapharm.com
在这项工作中,我们在有限温度模型中获得了变形的Schrödinger方程(DSE)的解决方案,在3维非依赖性的非交通性相位空间(3D-NRNCPS)中,使用了普遍的BOPP偏移方法,在有限的非交通性相位空间(3D-NRNCPS)对称性框架中,在持续的非态度(PN)的chrondryment chrondryment chrondryment chrondivist chrondivist(PR)。在有限的温度下,获得了重夸克系统(例如charmonium𝑐𝑐和底池𝑏𝑏)的修饰结合状态能谱。发现,离散光谱的扰动溶液对于the(𝑄=𝑐,𝑏)状态的谨慎原子量子数(𝑗,𝑙,𝑠,𝑏)是明智的,内部能量电位的参数(内部能量的参数) ,除非交换参数(𝛩,𝜃)外,运行耦合常数𝛼(𝑇),临界温度𝛽,自由参数𝑐。3D-NRNCPS对称性中的新型汉密尔顿操作员由交换相位空间中的相应操作员组成,三个用于自旋轨道相互作用,新的磁相互作用和旋转式术语的添加零件。使用获得的能量特征值以获得重夸克系统(𝑐𝑐和𝑏𝑏)的质谱。改进的内部能量电位的新能量水平的总完全退化变为相等,等于3D-NRNCPS对称性中的新值3𝑛𝑛,而不是3D-NRQM对称中的值𝑛𝑛。我们从DSE获得的非相关结果可能与高能量物理学中的狄拉克方程进行比较。ge; 03.65。ca; 12.39。JH 1。JH 1。关键字:schrödinger方程;非共同相位空间;内部能量在有限温度下; BOPP移位方法;重Quarkonium Systems PAC:03.65. -W; 03.65。引言众所周知,普通的schrödinger方程(SE)描述了低能量下量子系统的动力学而不考虑温度效应。最近,有限的温度SE使我们能够研究量子系统,例如超导性机制和玻色 - 因斯坦在任意温度下的冷凝水,当温度等于零时,它与SE相同[1]。最近,许多作者研究了热夸克 - 胶状等离子体的有限温度SE,Quark-Gluon等离子体(电子和质子系统)的重夸克尼亚,等等[2-5]。用各种类型的电势(例如内部能量电位和有限温度下的康奈尔电位)计算SE的能量光谱的问题一直引起人们的兴趣[2-8]。abu-shady已使用内部能势研究了重量夸克膜(HLM),并在包括有限温度时使用AEIM求解SE,并获得了波浪功能和能量光谱[7]。主要目的是开发研究文章[7]并将其扩展到非同性非交通性相位空间(NRNCP)所知的大型对称性,以实现更准确的物理视觉,以使该研究在纳米技术领域变得有效。非交互性量子力学是一种古老的想法,在文献中已广泛讨论。它自普通量子力学开始以来就出现了。应注意的是,海森伯格在1930年首次引入了非交易(NC)[9],然后是Snyder于1947年[10]。自发现弦理论和修改后的不确定性原理以来,人们对该领域的兴趣越来越大。此外,由于产生量子重力,建议提出NC的想法。它将提供自然的背景,以找到适合QFT的正则化解决方案[11-23]。在过去的三十年中,NC理论一直是广泛研究的重点,并产生了一种非常有趣的新量子场理论,具有有趣的意外特性[24]。因此,NC空间和相相的地形特性对量子系统的各种物理特性具有明显的影响,这在许多物理领域都非常有趣。在[24-36]等许多文章中都研究了非交通性的想法。另一方面,我们探讨了使用改进的内部能量潜力的新版本中创建新应用程序和更深刻的解释的可能性,并具有以下形式: