通讯作者:Salim Barbhuiya(电子邮件:s.barbhuiya@uel.ac.uk)摘要:工程化的胶结复合材料(ECC)由于其出色的机械性能和耐用性,在建筑行业中引起了极大的关注。此彻底的评论对ECC研究的进度和前景进行了细致的分析。它是通过引入背景和基本原理来调查ECC的,同时概述了审查的目标。评论提供了对ECC的概述,包括其定义,特征,历史发展,组成和组成材料。重点是检查ECC的机械性能,特别是其弯曲行为,拉伸行为,抗压强度和对环境因素的抵抗力。此外,还讨论了ECC的流变特性,包括可加工性,流动性,自我修复,缓解裂纹,粘度和触变性。评论深入研究了纤维增强对ECC的影响,包括所用的纤维类型,它们对机械和结构特性的影响以及纤维分散和方向。此外,它探讨了ECC在各个领域的各种应用,例如结构应用和可持续建筑实践。与ECC相关的挑战和局限性,例如成本和可用性,以及对未来趋势和研究方向的探索。关键字:工程化的胶结复合材料(ECC),耐用性,可行性,裂纹缓解,纤维增强1.2023; Shumuye等。引言工程胶结复合材料(ECC)由于其在建筑行业中的独特机械性能和潜在的应用而引起了相当大的研究兴趣。ECC是一种纤维增强的胶结材料,具有特殊的拉伸应变能力,裂纹控制和耐用性。ECC的发展可以追溯到1990年代Victor C. Li及其研究小组的开创性工作(Li,1998)。进行了广泛的研究,以探索ECC的各个方面,旨在提高其机械性能,优化其矩阵设计并扩大其应用程序范围。研究研究了ECC的直接拉伸性质,重点是影响其行为和应变响应的因素(Yu等,2018; Li等,2001)。已经探索了不连续的微纤维作为延性ECC的内在加固,以增强其韧性和结构性能(Zhang等,2020)。聚乙烯醇(PVA)纤维由于其有利的分散特征和应变硬化行为而成为增强的流行选择(Lee等,2009)。研究人员还研究了ECC的矩阵设计,特别着重于实现防水性能并在恶劣的环境中增强其性能(Yu等,2017; Zhang et al。2023)。此外,已经针对促进环保建筑实践的ECC及其在基础设施中的可持续性及其应用程序(Li,2019; Zhu等人。2021; Mishra等。2023)。使用
大多数服用Arni的人没有副作用。您的其他健康问题和药物会影响哪些副作用可能发展。请与您的医疗保健提供者讨论要注意的副作用,因为有些是认真的。另外,请与您的社区药剂师联系。请知道,让Arni剂量开始低,然后增加到“目标”剂量 - 最有效的剂量是很常见的。将药物剂量增加到靶剂量是通常治疗的一部分,而不是问题的迹象。
摘要加强胶结回填材料以回收脉管和尾矿的性能对于矿产资源和采矿废物管理的可持续发展至关重要。然而,在低成本,高废物比,低碳排放和低粘合剂消耗的实际限制下,巩固了毒性,毛孔和对具有卓越特性的水泥回填材料的采矿废物的升级,这是固有的矛盾和挑战性的。这项研究报告了一种废物到富裕途径,该途径通过纤维素纳米纤维来改善胶结的螺栓回填材料,以回收采矿废物并部分取代水泥。Mechanical compression, X-ray diffraction, thermogravimetry, mercury intrusion porosimetry, scanning electron microscopy tests, fractal quantitative analyses of microstructures, and molecular dynamics simulations were carried out to reveal the action mechanism of TEMPO-modified cellulose nanofibers on cemented gangue backfill materials.分析了节气改性纤维素纳米纤维和机械纤维素纳米纤维对胶结螺栓回填材料强度的贡献的差异。The results show a series of microscopic improvements of cellulose nanofibers on cemented gangue backfill materials, including regulating cemented gel polymerization, increasing hydration nucleation, inhibiting carbonization, densifying pore structure, enhanc- ing Ca-O connections and H bonds, and preventing C-S–H fracture along interlayer water.通过纤维素纳米纤维诱导的这种胶结材料的强度和能量吸收增强,具有最佳剂量可达到30〜50%。还发现过多的纤维素纳米纤维对这种复合材料有害,主要是通过延迟水合结晶并通过捕获空气增加孔,而尽管强度恶化,但它仍然表现出改善的变形抗性和能量吸收。
引言胶结对于确定陶瓷修复的最终成功和寿命至关重要。1,2陶瓷贴面失败的主要原因与胶结过程有关。3选择用于胶结的树脂水泥的足够聚合会影响修复和界面的应力传播。4固定树脂水泥被认为是胶结陶瓷饰面的更好材料。5受控的工作时间,容易去除过量的材料,对操作员的技术敏感性低,薄膜厚度,良好的物理特性,低溶解度和良好的粘附是支持选择轻固化树脂水泥的某些特征。6,7固定过程对于这类树脂水泥的适当聚合至关重要,影响了陶瓷贴面的长期临床性能
抽象的超高效果纤维增强混凝土(UHPFRC)是一种新型的建筑材料,表现出出色的机械和耐用性特征。最近,与其他类型的混凝土相比,UHPFRC具有显着优势。这项调查对用于开发UHPFRC的基本原理,原料,生产和制造技术进行了深入的评论。UHPFRC的设计以核心原则为指导,包括增强结构密度,微观结构的完善,孔隙率的降低和韧性增强。选择成分材料对UHPFRC的特征,生产中使用的技术及其固化过程的复杂性具有重大影响。可以通过掺入广泛获取的补充胶结成分(例如稻壳灰(RHA)和纳米颗粒,而不是胶结)以及掺入硅烟料来实现材料成本而不损害强度的材料成本。与环境固化相比,UHPFRC中升高温度固化的使用导致更紧凑的混凝土基质和提高的性能。但是,这种方法从根本上限制了UHPFRC的潜在应用。因此,UHPFRC生产的当前趋势正在朝着使用随时可用的原材料,传统铸造方法的应用以及在环境温度下实施固化过程的趋势。本评论试图加深我们的
摘要:尽管被胶结的土壤作为亚级填充材料可以满足某些性能的要求,但它容易受到地下水引起的毛细血管侵蚀的影响。为了消除毛细血管水升高引起的危害并总结了水运输特性的相关定律,使用氧化石墨烯(GO)来改善水泥土壤。本文进行了毛细血管吸水测试,无限制的抗压强度(UCS)测试,系数测试软化测试以及使用各种GO含量的胶结土壤中的电子显微镜(SEM)测试。结果表明,毛细血管吸收能力和毛细血管吸收率显示出降低,然后随着GO含量的增加而增加趋势,而UCS则表现出增加,然后降低趋势。当内容为0.09%时,改进效果最为明显。在此内容下,毛细血管吸收和毛细血管吸收率分别降低了25.8%和33.9%,在7D,14D和28D时的UCS分别降低了70.32%,57.94%和61.97%。SEM测试结果表明,GO通过刺激水泥水合并促进离子交换,从而降低了水泥土壤的明显空隙,从而优化了微观结构并提高了水性和机械性能。这项研究是进一步研究水迁移和适当治疗的胶质土壤亚地区的基础。
t ype 2糖尿病(T2DM)是一种全球流行病,它使数百万人成为全球医疗保健系统的重大负担。[1-3]解决这种疾病由于其多因素性质而被证明具有挑战性;它的发展与遗传,生活方式和环境因素之间的复杂相互作用有关,并因合并症而更加复杂。[4-6]尽管在糖尿病研究和医学创新方面取得了进步,但对T2DM的确定治疗仍然难以捉摸,需要对新型治疗途径进行持续的探索。[2,7]在这一持续的挑战中,有前途的前沿以钠 - 葡萄糖共转运蛋白2(SGLT2)抑制剂的形式出现,这代表了T2DM管理的范式转移。sglt2抑制剂调节肾胶结吸收,并在